Cancer-specific Nanomedicine Delivery Systems and the Role of the Tumor Microenvironment: A Critical Linkage
- Authors: Dutta Chakraborty D.1, Chakraborty P.1
-
Affiliations:
- Royal School of Pharmacy, The Assam Royal Global University
- Issue: Vol 14, No 2 (2024)
- Pages: 115-126
- Section: Pharmacology
- URL: https://journals.eco-vector.com/2468-1873/article/view/675835
- DOI: https://doi.org/10.2174/0124681873270736231024060618
- ID: 675835
Cite item
Full Text
Abstract
Background::The tumour microenvironment (TME) affects tumour development in a crucial way. Infinite stromal cells and extracellular matrices located in the tumour form complex tissues. The mature TME of epithelial-derived tumours exhibits common features irrespective of the tumour's anatomical locale. TME cells are subjected to hypoxia, oxidative stress, and acidosis, eliciting an extrinsic extracellular matrix (ECM) adjustment initiating responses by neighbouring stromal and immune cells (triggering angiogenesis and metastasis).
Objective::This report delivers challenges associated with targeting the TME for therapeutic pur-poses, technological advancement attempts to enhance understanding of the TME, and debate on strategies for intervening in the pro-tumour microenvironment to boost curative benefits.
Conclusion::Therapeutic targeting of TME has begun as an encouraging approach for cancer treatment owing to its imperative role in regulating tumour progression and modulating treatment response.
About the authors
Debarupa Dutta Chakraborty
Royal School of Pharmacy, The Assam Royal Global University
Author for correspondence.
Email: info@benthamscience.net
Prithviraj Chakraborty
Royal School of Pharmacy, The Assam Royal Global University
Email: info@benthamscience.net
References
- Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74. doi: 10.1186/s12951-018-0398-2 PMID: 30243297
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
- Chen B, Dai W, He B, et al. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 2017; 7(3): 538-58. doi: 10.7150/thno.16684 PMID: 28255348
- Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79. doi: 10.1016/j.addr.2013.09.019 PMID: 24120656
- Arneth B. Tumor microenvironment. Medicina 2019; 56(1): 15. doi: 10.3390/medicina56010015 PMID: 31906017
- Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(23): 5591-6. doi: 10.1242/jcs.116392 PMID: 23420197
- Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21(3): 309-22. doi: 10.1016/j.ccr.2012.02.022 PMID: 22439926
- Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
- Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology 2015; 82(3-4): 142-52. doi: 10.1159/000430499 PMID: 26330355
- Casey SC, Amedei A, Aquilano K, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35(Suppl)(Suppl.): S199-223. doi: 10.1016/j.semcancer.2015.02.007 PMID: 25865775
- Laplane L, Duluc D, Bikfalvi A, Larmonier N, Pradeu T. Beyond the tumour microenvironment. Int J Cancer 2019; 145(10): 2611-8. doi: 10.1002/ijc.32343 PMID: 30989643
- Witz IP. The tumor microenvironment: The making of a paradigm. Cancer Microenviron 2009; 2(S1) (Suppl. 1): 9-17. doi: 10.1007/s12307-009-0025-8 PMID: 19701697
- Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1(1): 46-54. doi: 10.1038/35094059 PMID: 11900251
- Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer 2018; 18(6): 359-76. doi: 10.1038/s41568-018-0006-7 PMID: 29700396
- Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genet Dev 2008; 18(1): 27-34. doi: 10.1016/j.gde.2007.12.006 PMID: 18282701
- Laconi E. The evolving concept of tumor microenvironments. BioEssays 2007; 29(8): 738-44. doi: 10.1002/bies.20606 PMID: 17621638
- Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904-12. doi: 10.1038/onc.2008.271 PMID: 18836471
- Li H, Fan X, Houghton J. Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem 2007; 101(4): 805-15. doi: 10.1002/jcb.21159 PMID: 17226777
- Witz IP. Tumor-microenvironment interactions: Dangerous liaisons. Adv Cancer Res 2008; 100: 203-29. doi: 10.1016/S0065-230X(08)00007-9 PMID: 18620097
- Anderson NM, Simon MC. The tumor microenvironment. Curr Biol 2020; 30(16): R921-5. doi: 10.1016/j.cub.2020.06.081 PMID: 32810447
- Casey SC, Li Y, Fan AC, Felsher DW. Oncogene withdrawal engages the immune system to induce sustained cancer regression. J Immunother Cancer 2014; 2(1): 24. doi: 10.1186/2051-1426-2-24 PMID: 25089198
- Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment. Front Biosci 2007; 12(8-12): 3468-74. doi: 10.2741/2327 PMID: 17485314
- Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-44. doi: 10.1038/nature07205 PMID: 18650914
- Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
- Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016; 40: 41-8. doi: 10.1016/j.copbio.2016.02.007 PMID: 26938687
- Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol 2017; 35: 40-7. doi: 10.1016/j.coph.2017.05.004 PMID: 28577499
- Whiteside TL. The local tumor microenvironment. In: Kaufman HL, Wolchok JD, Eds. General Principles of Tumor Immunotherapy. Dordrecht: Springer Netherlands 2007; pp. 145-67. doi: 10.1007/978-1-4020-6087-8_7
- Whiteside TL, Vujanovic NL, Herberman RB. Natural killer cells and tumor therapy. Curr Top Microbiol Immunol 1998; 230: 221-44. doi: 10.1007/978-3-642-46859-9_13 PMID: 9586358
- Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2003; 24: 232-3. PMID: 12401408
- Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13(13): 453-61. doi: 10.2741/2692 PMID: 17981560
- Loukinova E, Dong G, Enamorado-Ayalya I, et al. Growth regulated oncogene-α expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC Receptor-2 dependent mechanism. Oncogene 2000; 19(31): 3477-86. doi: 10.1038/sj.onc.1203687 PMID: 10918606
- Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm 2020; 1(1): 47-68. doi: 10.1002/mco2.6 PMID: 34766109
- Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab 2017; 25(5): 1037-43. doi: 10.1016/j.cmet.2017.04.004 PMID: 28467923
- Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol 2017; 27(11): 863-75. doi: 10.1016/j.tcb.2017.06.003 PMID: 28734735
- Linehan WM, Schmidt LS, Crooks DR, et al. The metabolic basis of kidney cancer. Cancer Discov 2019; 9(8): 1006-21. doi: 10.1158/2159-8290.CD-18-1354 PMID: 31088840
- Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
- Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14. doi: 10.1126/science.123.3191.309 PMID: 13298683
- Eagle H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 1955; 102(5): 595-600. doi: 10.1084/jem.102.5.595 PMID: 13271674
- Altman BJ, Stine ZE, Dang CV. Erratum: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer 2016; 16(11): 749. doi: 10.1038/nrc.2016.114 PMID: 28704361
- Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 1983; 63(2): 547-605. doi: 10.1152/physrev.1983.63.2.547 PMID: 6132422
- Hoxhaj G, Manning BD. The PI3KAKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74-88. doi: 10.1038/s41568-019-0216-7 PMID: 31686003
- Hatzivassiliou G, Zhao F, Bauer DE, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8(4): 311-21. doi: 10.1016/j.ccr.2005.09.008 PMID: 16226706
- Corbet C, Feron O. Tumour acidosis: From the passenger to the drivers seat. Nat Rev Cancer 2017; 17(10): 577-93. doi: 10.1038/nrc.2017.77 PMID: 28912578
- Choi SYC, Collins CC, Gout PW, Wang Y. Cancer‐generated lactic acid: A regulatory, immunosuppressive metabolite? J Pathol 2013; 230(4): 350-5. doi: 10.1002/path.4218 PMID: 23729358
- Parks SK, Chiche J, Pouysségur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 2013; 13(9): 611-23. doi: 10.1038/nrc3579 PMID: 23969692
- Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci 2019; 44(2): 153-66. doi: 10.1016/j.tibs.2018.10.011 PMID: 30473428
- Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18(1): 157. doi: 10.1186/s12943-019-1089-9 PMID: 31711497
- Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11(6): 393-410. doi: 10.1038/nrc3064 PMID: 21606941
- Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis 2018; 7(1): 10. doi: 10.1038/s41389-017-0011-9 PMID: 29362402
- Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559-63. doi: 10.1038/nature13490 PMID: 25043024
- Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 2019; 20(24): 6140. doi: 10.3390/ijms20246140 PMID: 31817513
- Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol 2020; 1232: 131-43. doi: 10.1007/978-3-030-34461-0_18 PMID: 31893404
- Hatfield SM, Kjaergaard J, Lukashev D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 2015; 7(277): 277ra30. doi: 10.1126/scitranslmed.aaa1260 PMID: 25739764
- Hasmim M, Messai Y, Ziani L, et al. Critical role of tumor microenvironment in shaping NK Cell functions: Implication of hypoxic stress. Front Immunol 2015; 6: 482. doi: 10.3389/fimmu.2015.00482 PMID: 26441986
- Parodi M, Raggi F, Cangelosi D, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol 2018; 9: 2358. doi: 10.3389/fimmu.2018.02358 PMID: 30459756
- Lee JH, Elly C, Park Y, Liu YC. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity 2015; 42(6): 1062-74. doi: 10.1016/j.immuni.2015.05.016 PMID: 26084024
- Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36-50. doi: 10.1016/j.cmet.2019.06.001 PMID: 31269428
- Liu C, Chikina M, Deshpande R, et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity 2019; 51(2): 381-397.e6. doi: 10.1016/j.immuni.2019.06.017 PMID: 31350177
- Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108-19. doi: 10.1038/s41590-017-0022-x PMID: 29348500
- Zhang J, Lu Y, Pienta KJ. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 2010; 102(8): 522-8. doi: 10.1093/jnci/djq044 PMID: 20233997
- Fernandes C, Suares D, Yergeri MC. Tumor microenvironment targeted nanotherapy. Front Pharmacol 2018; 9: 1230. doi: 10.3389/fphar.2018.01230 PMID: 30429787
- Chen F, Zhuang X, Lin L, et al. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med 2015; 13(1): 45. doi: 10.1186/s12916-015-0278-7 PMID: 25857315
- Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2014; 21(4): 345-57. doi: 10.1111/micc.12107 PMID: 24267154
- Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314(1): 15-23. doi: 10.1007/s00441-003-0745-x PMID: 12883993
- Kang E, Shin JW. Pericyte-targeting drug delivery and tissue engineering. Int J Nanomedicine 2016; 11: 2397-406. doi: 10.2147/IJN.S105274 PMID: 27313454
- Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther 2017; 171: 30-42. doi: 10.1016/j.pharmthera.2016.11.008 PMID: 27916653
- Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res 2015; 166: 193-226. doi: 10.1007/978-3-319-16555-4_9 PMID: 25895870
- Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92. PMID: 2946403
- Bremnes RM, Dønnem T, Al-Saad S, et al. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 2011; 6(1): 209-17. doi: 10.1097/JTO.0b013e3181f8a1bd PMID: 21107292
- Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018; 15(6): 366-81. doi: 10.1038/s41571-018-0007-1 PMID: 29651130
- Hughes CCW. Endothelial???stromal interactions in angiogenesis. Curr Opin Hematol 2008; 15(3): 204-9. doi: 10.1097/MOH.0b013e3282f97dbc PMID: 18391786
- Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Mol Biol Cell 2010; 21(24): 4300-5. doi: 10.1091/mbc.e10-03-0251 PMID: 21160071
- Xiong GF, Xu R. Function of cancer cell-derived extracellular matrix in tumor progression. J Cancer Metastasis Treat 2016; 2(9): 357-64. doi: 10.20517/2394-4722.2016.08
- Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: The mechanics of cancer progression and aggression. Front Cell Dev Biol 2018; 6: 17. doi: 10.3389/fcell.2018.00017 PMID: 29541636
- Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4(2): 165-78. doi: 10.1242/dmm.004077 PMID: 21324931
- Reid SE, Kay EJ, Neilson LJ, et al. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 2017; 36(16): 2373-89. doi: 10.15252/embj.201694912 PMID: 28694244
- Holback H, Yeo Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011; 28(8): 1819-30. doi: 10.1007/s11095-010-0360-y PMID: 21213021
- Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target tumor-associated macrophages. Int J Mol Sci 2017; 18(5): 979. doi: 10.3390/ijms18050979 PMID: 28471401
- Quail DF, Joyce JA. Molecular pathways: Deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res 2017; 23(4): 876-84. doi: 10.1158/1078-0432.CCR-16-0133 PMID: 27895033
- Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114: 206-21. doi: 10.1016/j.addr.2017.04.010 PMID: 28449873
- Pankova D, Chen Y, Terajima M, et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 2016; 14(3): 287-95. doi: 10.1158/1541-7786.MCR-15-0307 PMID: 26631572
- Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 2015; 36: 13-22. doi: 10.1016/j.ceb.2015.06.004 PMID: 26183445
- Zhang B, Hu Y, Pang Z. Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front Pharmacol 2017; 8: 952. doi: 10.3389/fphar.2017.00952 PMID: 29311946
- Scallan J, Huxley VH, Korthuis RJ. Capillary fluid exchange: Regulation, functions, and pathology. San Rafael, CA: Morgan & Claypool Life Sciences 2010.
- Omidi Y, Barar J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts 2014; 4(2): 55-67. PMID: 25035848
- Lunt SJ, Fyles A, Hill RP, Milosevic M. Interstitial fluid pressure in tumors: Therapeutic barrier and biomarker of angiogenesis. Future Oncol 2008; 4(6): 793-802. doi: 10.2217/14796694.4.6.793 PMID: 19086846
- Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol Rev 2012; 92(3): 1005-60. doi: 10.1152/physrev.00037.2011 PMID: 22811424
- Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J. Releasing pressure in tumors: What do we know so far and where do we go from here? A review. Cancer Res 2014; 74(10): 2655-62. doi: 10.1158/0008-5472.CAN-13-3696 PMID: 24778418
- Stylianopoulos T. The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng 2017; 139(2): 021004. doi: 10.1115/1.4034991 PMID: 27760260
- Baronzio G, Schwartz L, Kiselevsky M, et al. Tumor interstitial fluid as modulator of cancer inflammation, thrombosis, immunity and angiogenesis. Anticancer Res 2012; 32(2): 405-14. PMID: 22287726
- Simonsen TG, Gaustad JV, Leinaas MN, Rofstad EK. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts. PLoS One 2012; 7(6): e40006. doi: 10.1371/journal.pone.0040006 PMID: 22768196
- Yu T, Liu K, Wu Y, et al. High interstitial fluid pressure promotes tumor cell proliferation and invasion in oral squamous cell carcinoma. Int J Mol Med 2013; 32(5): 1093-100. doi: 10.3892/ijmm.2013.1496 PMID: 24043259
- Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015; 5: 115. doi: 10.3389/fonc.2015.00115 PMID: 26075182
- Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153: 107-24. doi: 10.1016/j.pharmthera.2015.06.006 PMID: 26073310
- Wu M, Frieboes HB, McDougall SR, Chaplain MAJ, Cristini V, Lowengrub J. The effect of interstitial pressure on tumor growth: Coupling with the blood and lymphatic vascular systems. J Theor Biol 2013; 320: 131-51. doi: 10.1016/j.jtbi.2012.11.031 PMID: 23220211
- Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 2006; 4(2): 61-70. doi: 10.1158/1541-7786.MCR-06-0002 PMID: 16513837
- Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies. Annu Rev Chem Biomol Eng 2011; 2(1): 281-98. doi: 10.1146/annurev-chembioeng-061010-114300 PMID: 22432620
- Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018; 4(4): 292-319. doi: 10.1016/j.trecan.2018.02.005 PMID: 29606314
- Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016; 27(10): 2225-38. doi: 10.1021/acs.bioconjchem.6b00437 PMID: 27547843
- Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34. doi: 10.1186/s40580-021-00282-7 PMID: 34727233
- Aggarwal S. Targeted cancer therapies. Nat Rev Drug Discov 2010; 9(6): 427-8. doi: 10.1038/nrd3186 PMID: 20514063
- Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 2018; 834: 188-96. doi: 10.1016/j.ejphar.2018.07.034 PMID: 30031797
- Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019; 51(1): 27-41. doi: 10.1016/j.immuni.2019.06.025 PMID: 31315034
- Yang KQ, Liu Y, Huang QH, et al. Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth. BMC Cancer 2017; 17(1): 878. doi: 10.1186/s12885-017-3879-z
- Nandi P, Girish GV, Majumder M, Xin X, Tutunea-Fatan E, Lala PK. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 2017; 17(1): 11. doi: 10.1186/s12885-016-3018-2 PMID: 28056899
- Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 2017; 108(10): 1921-6. doi: 10.1111/cas.13336 PMID: 28763139
- Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20(3): 174-86. doi: 10.1038/s41568-019-0238-1 PMID: 31980749
- Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2020; 122(4): 465-72. doi: 10.1038/s41416-019-0648-6 PMID: 31831859
- Nwosu ZC, Piorońska W, Battello N, et al. Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine 2020; 54: 102699. doi: 10.1016/j.ebiom.2020.102699 PMID: 32330875
- Gupta SK, Singh P, Ali V, Verma M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol Rev 2020; 14(2): 448. doi: 10.4081/oncol.2020.448 PMID: 32676170
- Ward RA, Fawell S, Floch N, Flemington V, McKerrecher D, Smith PD. Challenges and opportunities in cancer drug resistance. Chem Rev 2021; 121(6): 3297-351. doi: 10.1021/acs.chemrev.0c00383 PMID: 32692162
- Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: The architect of drug resistance. Nat Rev Urol 2020; 17(5): 292-307. doi: 10.1038/s41585-020-0298-8 PMID: 32203305
- Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019; 19(10): 587-602. doi: 10.1038/s41568-019-0186-9 PMID: 31492927
- Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in medicine to address the challenge of cancer drug resistance: From micro- and nanotechnologies to computational and mathematical modeling. Chem Rev 2021; 121(6): 3352-89. doi: 10.1021/acs.chemrev.0c00356 PMID: 33152247
- Frame FM, Noble AR, Klein S, et al. Tumor heterogeneity and therapy resistance-implications for future treatments of prostate cancer. J Cancer Metastasis Treat 2017; 3(12): 302-14. doi: 10.20517/2394-4722.2017.34
- Mullard A. New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov 2014; 13(12): 877. doi: 10.1038/nrd4507 PMID: 25435204
- Govers TM, Hessels D, Vlaeminck-Guillem V, et al. Cost-effectiveness of SelectMDx for prostate cancer in four European countries: A comparative modeling study. Prostate Cancer Prostatic Dis 2019; 22(1): 101-9. doi: 10.1038/s41391-018-0076-3 PMID: 30127462
- Walter FM, Emery JD, Mendonca S, et al. Symptoms and patient factors associated with longer time to diagnosis for colorectal cancer: Results from a prospective cohort study. Br J Cancer 2016; 115(5): 533-41. doi: 10.1038/bjc.2016.221 PMID: 27490803
- Vine MF, Calingaert B, Berchuck A, Schildkraut JM. Characterization of prediagnostic symptoms among primary epithelial ovarian cancer cases and controls. Gynecol Oncol 2003; 90(1): 75-82. doi: 10.1016/S0090-8258(03)00175-6 PMID: 12821345
- Umar AA, Atabo SM. A review of imaging techniques in scientific research/clinical diagnosis. MOJ Anat & Physiol 2019; 6(5): 175-83.
- Koss LG. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 1989; 261(5): 737-43. doi: 10.1001/jama.1989.03420050087046 PMID: 2642983
- Greegor DH. Occult blood testing for detection of asymptomatic colon cancer. Cancer 1971; 28(1): 131-4. doi: 10.1002/1097-0142(197107)28:13.0.CO;2-I PMID: 5110619
- Holmström B, Johansson M, Bergh A, Stenman UH, Hallmans G, Stattin P. Prostate specific antigen for early detection of prostate cancer: Longitudinal study. BMJ 2009; 339(sep24 1): b3537. doi: 10.1136/bmj.b3537 PMID: 19778969
- Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 2014; 114(12): 6130-78. doi: 10.1021/cr200359p PMID: 24779710
- Chang Z, Zhou H, Yang C, et al. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J Mater Chem B Mater Biol Med 2020; 8(23): 5019-25. doi: 10.1039/D0TB00403K PMID: 32393955
- He S, Li J, Chen M, et al. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int J Nanomedicine 2020; 15: 8451-63. doi: 10.2147/IJN.S265134 PMID: 33149586
- Stern E, Vacic A, Rajan NK, et al. Label-free biomarker detection from whole blood. Nat Nanotechnol 2010; 5(2): 138-42. doi: 10.1038/nnano.2009.353 PMID: 20010825
- Dart A. Catching cancer. Nat Rev Cancer 2020; 20(6): 299. doi: 10.1038/s41568-020-0268-8 PMID: 32358522
- Loynachan CN, Soleimany AP, Dudani JS, et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat Nanotechnol 2019; 14(9): 883-90. doi: 10.1038/s41565-019-0527-6 PMID: 31477801
- Salinas HR, Miyasato DL, Eremina OE, et al. A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection. Biomater Sci 2021; 9(2): 482-95. doi: 10.1039/D0BM01099E PMID: 32812951
- Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat Nanotechnol 2017; 12(12): 1169-75. doi: 10.1038/nnano.2017.176 PMID: 28892102
- Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017; 2(7): 17024. doi: 10.1038/natrevmats.2017.24 PMID: 29075517
- Liu D, Zhou Z, Wang X, et al. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials 2020; 244: 119979. doi: 10.1016/j.biomaterials.2020.119979 PMID: 32200104
- Bitonto V, Alberti D, Ruiu R, Aime S, Geninatti Crich S, Cutrin JC. L-ferritin: A theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release 2020; 319: 300-10. doi: 10.1016/j.jconrel.2019.12.051 PMID: 31899271
- Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and nanomaterials-based recent approaches in upgraded targeting and management of cancer: A review. Cancers 2022; 15(1): 162. doi: 10.3390/cancers15010162 PMID: 36612158
- Liu Y, Ji X, Tong WWL, et al. Engineering multifunctional rnai nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew Chem Int Ed 2018; 57(6): 1510-3. doi: 10.1002/anie.201710144 PMID: 29276823
- Yu W, Lin R, He X, et al. Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharm Sin B 2021; 11(9): 2924-36. doi: 10.1016/j.apsb.2021.04.006 PMID: 34589405
- Zhang J, Huang L, Ge G, Hu K. Emerging epigenetic‐based nanotechnology for cancer therapy: Modulating the tumor microenvironment. Adv Sci 2023; 10(7): 2206169. doi: 10.1002/advs.202206169 PMID: 36599655
- Wu P, Han J, Gong Y, Liu C, Yu H, Xie N. Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: Current advances and applications. Pharmaceutics 2022; 14(10): 1990. doi: 10.3390/pharmaceutics14101990 PMID: 36297426
- Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor microenvironment regulation and cancer targeting therapy based on nanoparticles. J Funct Biomater 2023; 14(3): 136. doi: 10.3390/jfb14030136 PMID: 36976060
Supplementary files
