Cancer-specific Nanomedicine Delivery Systems and the Role of the Tumor Microenvironment: A Critical Linkage


Cite item

Full Text

Abstract

Background::The tumour microenvironment (TME) affects tumour development in a crucial way. Infinite stromal cells and extracellular matrices located in the tumour form complex tissues. The mature TME of epithelial-derived tumours exhibits common features irrespective of the tumour's anatomical locale. TME cells are subjected to hypoxia, oxidative stress, and acidosis, eliciting an extrinsic extracellular matrix (ECM) adjustment initiating responses by neighbouring stromal and immune cells (triggering angiogenesis and metastasis).

Objective::This report delivers challenges associated with targeting the TME for therapeutic pur-poses, technological advancement attempts to enhance understanding of the TME, and debate on strategies for intervening in the pro-tumour microenvironment to boost curative benefits.

Conclusion::Therapeutic targeting of TME has begun as an encouraging approach for cancer treatment owing to its imperative role in regulating tumour progression and modulating treatment response.

About the authors

Debarupa Dutta Chakraborty

Royal School of Pharmacy, The Assam Royal Global University

Author for correspondence.
Email: info@benthamscience.net

Prithviraj Chakraborty

Royal School of Pharmacy, The Assam Royal Global University

Email: info@benthamscience.net

References

  1. Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74. doi: 10.1186/s12951-018-0398-2 PMID: 30243297
  2. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
  3. Chen B, Dai W, He B, et al. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 2017; 7(3): 538-58. doi: 10.7150/thno.16684 PMID: 28255348
  4. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79. doi: 10.1016/j.addr.2013.09.019 PMID: 24120656
  5. Arneth B. Tumor microenvironment. Medicina 2019; 56(1): 15. doi: 10.3390/medicina56010015 PMID: 31906017
  6. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(23): 5591-6. doi: 10.1242/jcs.116392 PMID: 23420197
  7. Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21(3): 309-22. doi: 10.1016/j.ccr.2012.02.022 PMID: 22439926
  8. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  9. Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology 2015; 82(3-4): 142-52. doi: 10.1159/000430499 PMID: 26330355
  10. Casey SC, Amedei A, Aquilano K, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35(Suppl)(Suppl.): S199-223. doi: 10.1016/j.semcancer.2015.02.007 PMID: 25865775
  11. Laplane L, Duluc D, Bikfalvi A, Larmonier N, Pradeu T. Beyond the tumour microenvironment. Int J Cancer 2019; 145(10): 2611-8. doi: 10.1002/ijc.32343 PMID: 30989643
  12. Witz IP. The tumor microenvironment: The making of a paradigm. Cancer Microenviron 2009; 2(S1) (Suppl. 1): 9-17. doi: 10.1007/s12307-009-0025-8 PMID: 19701697
  13. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1(1): 46-54. doi: 10.1038/35094059 PMID: 11900251
  14. Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer 2018; 18(6): 359-76. doi: 10.1038/s41568-018-0006-7 PMID: 29700396
  15. Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genet Dev 2008; 18(1): 27-34. doi: 10.1016/j.gde.2007.12.006 PMID: 18282701
  16. Laconi E. The evolving concept of tumor microenvironments. BioEssays 2007; 29(8): 738-44. doi: 10.1002/bies.20606 PMID: 17621638
  17. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904-12. doi: 10.1038/onc.2008.271 PMID: 18836471
  18. Li H, Fan X, Houghton J. Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem 2007; 101(4): 805-15. doi: 10.1002/jcb.21159 PMID: 17226777
  19. Witz IP. Tumor-microenvironment interactions: Dangerous liaisons. Adv Cancer Res 2008; 100: 203-29. doi: 10.1016/S0065-230X(08)00007-9 PMID: 18620097
  20. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol 2020; 30(16): R921-5. doi: 10.1016/j.cub.2020.06.081 PMID: 32810447
  21. Casey SC, Li Y, Fan AC, Felsher DW. Oncogene withdrawal engages the immune system to induce sustained cancer regression. J Immunother Cancer 2014; 2(1): 24. doi: 10.1186/2051-1426-2-24 PMID: 25089198
  22. Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment. Front Biosci 2007; 12(8-12): 3468-74. doi: 10.2741/2327 PMID: 17485314
  23. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-44. doi: 10.1038/nature07205 PMID: 18650914
  24. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
  25. Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016; 40: 41-8. doi: 10.1016/j.copbio.2016.02.007 PMID: 26938687
  26. Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol 2017; 35: 40-7. doi: 10.1016/j.coph.2017.05.004 PMID: 28577499
  27. Whiteside TL. The local tumor microenvironment. In: Kaufman HL, Wolchok JD, Eds. General Principles of Tumor Immunotherapy. Dordrecht: Springer Netherlands 2007; pp. 145-67. doi: 10.1007/978-1-4020-6087-8_7
  28. Whiteside TL, Vujanovic NL, Herberman RB. Natural killer cells and tumor therapy. Curr Top Microbiol Immunol 1998; 230: 221-44. doi: 10.1007/978-3-642-46859-9_13 PMID: 9586358
  29. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2003; 24: 232-3. PMID: 12401408
  30. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13(13): 453-61. doi: 10.2741/2692 PMID: 17981560
  31. Loukinova E, Dong G, Enamorado-Ayalya I, et al. Growth regulated oncogene-α expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC Receptor-2 dependent mechanism. Oncogene 2000; 19(31): 3477-86. doi: 10.1038/sj.onc.1203687 PMID: 10918606
  32. Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm 2020; 1(1): 47-68. doi: 10.1002/mco2.6 PMID: 34766109
  33. Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab 2017; 25(5): 1037-43. doi: 10.1016/j.cmet.2017.04.004 PMID: 28467923
  34. Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol 2017; 27(11): 863-75. doi: 10.1016/j.tcb.2017.06.003 PMID: 28734735
  35. Linehan WM, Schmidt LS, Crooks DR, et al. The metabolic basis of kidney cancer. Cancer Discov 2019; 9(8): 1006-21. doi: 10.1158/2159-8290.CD-18-1354 PMID: 31088840
  36. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
  37. Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14. doi: 10.1126/science.123.3191.309 PMID: 13298683
  38. Eagle H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 1955; 102(5): 595-600. doi: 10.1084/jem.102.5.595 PMID: 13271674
  39. Altman BJ, Stine ZE, Dang CV. Erratum: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer 2016; 16(11): 749. doi: 10.1038/nrc.2016.114 PMID: 28704361
  40. Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 1983; 63(2): 547-605. doi: 10.1152/physrev.1983.63.2.547 PMID: 6132422
  41. Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74-88. doi: 10.1038/s41568-019-0216-7 PMID: 31686003
  42. Hatzivassiliou G, Zhao F, Bauer DE, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8(4): 311-21. doi: 10.1016/j.ccr.2005.09.008 PMID: 16226706
  43. Corbet C, Feron O. Tumour acidosis: From the passenger to the driver’s seat. Nat Rev Cancer 2017; 17(10): 577-93. doi: 10.1038/nrc.2017.77 PMID: 28912578
  44. Choi SYC, Collins CC, Gout PW, Wang Y. Cancer‐generated lactic acid: A regulatory, immunosuppressive metabolite? J Pathol 2013; 230(4): 350-5. doi: 10.1002/path.4218 PMID: 23729358
  45. Parks SK, Chiche J, Pouysségur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 2013; 13(9): 611-23. doi: 10.1038/nrc3579 PMID: 23969692
  46. Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci 2019; 44(2): 153-66. doi: 10.1016/j.tibs.2018.10.011 PMID: 30473428
  47. Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18(1): 157. doi: 10.1186/s12943-019-1089-9 PMID: 31711497
  48. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11(6): 393-410. doi: 10.1038/nrc3064 PMID: 21606941
  49. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis 2018; 7(1): 10. doi: 10.1038/s41389-017-0011-9 PMID: 29362402
  50. Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559-63. doi: 10.1038/nature13490 PMID: 25043024
  51. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 2019; 20(24): 6140. doi: 10.3390/ijms20246140 PMID: 31817513
  52. Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol 2020; 1232: 131-43. doi: 10.1007/978-3-030-34461-0_18 PMID: 31893404
  53. Hatfield SM, Kjaergaard J, Lukashev D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 2015; 7(277): 277ra30. doi: 10.1126/scitranslmed.aaa1260 PMID: 25739764
  54. Hasmim M, Messai Y, Ziani L, et al. Critical role of tumor microenvironment in shaping NK Cell functions: Implication of hypoxic stress. Front Immunol 2015; 6: 482. doi: 10.3389/fimmu.2015.00482 PMID: 26441986
  55. Parodi M, Raggi F, Cangelosi D, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol 2018; 9: 2358. doi: 10.3389/fimmu.2018.02358 PMID: 30459756
  56. Lee JH, Elly C, Park Y, Liu YC. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity 2015; 42(6): 1062-74. doi: 10.1016/j.immuni.2015.05.016 PMID: 26084024
  57. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36-50. doi: 10.1016/j.cmet.2019.06.001 PMID: 31269428
  58. Liu C, Chikina M, Deshpande R, et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity 2019; 51(2): 381-397.e6. doi: 10.1016/j.immuni.2019.06.017 PMID: 31350177
  59. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108-19. doi: 10.1038/s41590-017-0022-x PMID: 29348500
  60. Zhang J, Lu Y, Pienta KJ. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 2010; 102(8): 522-8. doi: 10.1093/jnci/djq044 PMID: 20233997
  61. Fernandes C, Suares D, Yergeri MC. Tumor microenvironment targeted nanotherapy. Front Pharmacol 2018; 9: 1230. doi: 10.3389/fphar.2018.01230 PMID: 30429787
  62. Chen F, Zhuang X, Lin L, et al. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med 2015; 13(1): 45. doi: 10.1186/s12916-015-0278-7 PMID: 25857315
  63. Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2014; 21(4): 345-57. doi: 10.1111/micc.12107 PMID: 24267154
  64. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314(1): 15-23. doi: 10.1007/s00441-003-0745-x PMID: 12883993
  65. Kang E, Shin JW. Pericyte-targeting drug delivery and tissue engineering. Int J Nanomedicine 2016; 11: 2397-406. doi: 10.2147/IJN.S105274 PMID: 27313454
  66. Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther 2017; 171: 30-42. doi: 10.1016/j.pharmthera.2016.11.008 PMID: 27916653
  67. Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res 2015; 166: 193-226. doi: 10.1007/978-3-319-16555-4_9 PMID: 25895870
  68. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92. PMID: 2946403
  69. Bremnes RM, Dønnem T, Al-Saad S, et al. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 2011; 6(1): 209-17. doi: 10.1097/JTO.0b013e3181f8a1bd PMID: 21107292
  70. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018; 15(6): 366-81. doi: 10.1038/s41571-018-0007-1 PMID: 29651130
  71. Hughes CCW. Endothelial???stromal interactions in angiogenesis. Curr Opin Hematol 2008; 15(3): 204-9. doi: 10.1097/MOH.0b013e3282f97dbc PMID: 18391786
  72. Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Mol Biol Cell 2010; 21(24): 4300-5. doi: 10.1091/mbc.e10-03-0251 PMID: 21160071
  73. Xiong GF, Xu R. Function of cancer cell-derived extracellular matrix in tumor progression. J Cancer Metastasis Treat 2016; 2(9): 357-64. doi: 10.20517/2394-4722.2016.08
  74. Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: The mechanics of cancer progression and aggression. Front Cell Dev Biol 2018; 6: 17. doi: 10.3389/fcell.2018.00017 PMID: 29541636
  75. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4(2): 165-78. doi: 10.1242/dmm.004077 PMID: 21324931
  76. Reid SE, Kay EJ, Neilson LJ, et al. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 2017; 36(16): 2373-89. doi: 10.15252/embj.201694912 PMID: 28694244
  77. Holback H, Yeo Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011; 28(8): 1819-30. doi: 10.1007/s11095-010-0360-y PMID: 21213021
  78. Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target tumor-associated macrophages. Int J Mol Sci 2017; 18(5): 979. doi: 10.3390/ijms18050979 PMID: 28471401
  79. Quail DF, Joyce JA. Molecular pathways: Deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res 2017; 23(4): 876-84. doi: 10.1158/1078-0432.CCR-16-0133 PMID: 27895033
  80. Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114: 206-21. doi: 10.1016/j.addr.2017.04.010 PMID: 28449873
  81. Pankova D, Chen Y, Terajima M, et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 2016; 14(3): 287-95. doi: 10.1158/1541-7786.MCR-15-0307 PMID: 26631572
  82. Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 2015; 36: 13-22. doi: 10.1016/j.ceb.2015.06.004 PMID: 26183445
  83. Zhang B, Hu Y, Pang Z. Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front Pharmacol 2017; 8: 952. doi: 10.3389/fphar.2017.00952 PMID: 29311946
  84. Scallan J, Huxley VH, Korthuis RJ. Capillary fluid exchange: Regulation, functions, and pathology. San Rafael, CA: Morgan & Claypool Life Sciences 2010.
  85. Omidi Y, Barar J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts 2014; 4(2): 55-67. PMID: 25035848
  86. Lunt SJ, Fyles A, Hill RP, Milosevic M. Interstitial fluid pressure in tumors: Therapeutic barrier and biomarker of angiogenesis. Future Oncol 2008; 4(6): 793-802. doi: 10.2217/14796694.4.6.793 PMID: 19086846
  87. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol Rev 2012; 92(3): 1005-60. doi: 10.1152/physrev.00037.2011 PMID: 22811424
  88. Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J. Releasing pressure in tumors: What do we know so far and where do we go from here? A review. Cancer Res 2014; 74(10): 2655-62. doi: 10.1158/0008-5472.CAN-13-3696 PMID: 24778418
  89. Stylianopoulos T. The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng 2017; 139(2): 021004. doi: 10.1115/1.4034991 PMID: 27760260
  90. Baronzio G, Schwartz L, Kiselevsky M, et al. Tumor interstitial fluid as modulator of cancer inflammation, thrombosis, immunity and angiogenesis. Anticancer Res 2012; 32(2): 405-14. PMID: 22287726
  91. Simonsen TG, Gaustad JV, Leinaas MN, Rofstad EK. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts. PLoS One 2012; 7(6): e40006. doi: 10.1371/journal.pone.0040006 PMID: 22768196
  92. Yu T, Liu K, Wu Y, et al. High interstitial fluid pressure promotes tumor cell proliferation and invasion in oral squamous cell carcinoma. Int J Mol Med 2013; 32(5): 1093-100. doi: 10.3892/ijmm.2013.1496 PMID: 24043259
  93. Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015; 5: 115. doi: 10.3389/fonc.2015.00115 PMID: 26075182
  94. Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153: 107-24. doi: 10.1016/j.pharmthera.2015.06.006 PMID: 26073310
  95. Wu M, Frieboes HB, McDougall SR, Chaplain MAJ, Cristini V, Lowengrub J. The effect of interstitial pressure on tumor growth: Coupling with the blood and lymphatic vascular systems. J Theor Biol 2013; 320: 131-51. doi: 10.1016/j.jtbi.2012.11.031 PMID: 23220211
  96. Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 2006; 4(2): 61-70. doi: 10.1158/1541-7786.MCR-06-0002 PMID: 16513837
  97. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies. Annu Rev Chem Biomol Eng 2011; 2(1): 281-98. doi: 10.1146/annurev-chembioeng-061010-114300 PMID: 22432620
  98. Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018; 4(4): 292-319. doi: 10.1016/j.trecan.2018.02.005 PMID: 29606314
  99. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016; 27(10): 2225-38. doi: 10.1021/acs.bioconjchem.6b00437 PMID: 27547843
  100. Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34. doi: 10.1186/s40580-021-00282-7 PMID: 34727233
  101. Aggarwal S. Targeted cancer therapies. Nat Rev Drug Discov 2010; 9(6): 427-8. doi: 10.1038/nrd3186 PMID: 20514063
  102. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 2018; 834: 188-96. doi: 10.1016/j.ejphar.2018.07.034 PMID: 30031797
  103. Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019; 51(1): 27-41. doi: 10.1016/j.immuni.2019.06.025 PMID: 31315034
  104. Yang KQ, Liu Y, Huang QH, et al. Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth. BMC Cancer 2017; 17(1): 878. doi: 10.1186/s12885-017-3879-z
  105. Nandi P, Girish GV, Majumder M, Xin X, Tutunea-Fatan E, Lala PK. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 2017; 17(1): 11. doi: 10.1186/s12885-016-3018-2 PMID: 28056899
  106. Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 2017; 108(10): 1921-6. doi: 10.1111/cas.13336 PMID: 28763139
  107. Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20(3): 174-86. doi: 10.1038/s41568-019-0238-1 PMID: 31980749
  108. Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2020; 122(4): 465-72. doi: 10.1038/s41416-019-0648-6 PMID: 31831859
  109. Nwosu ZC, Piorońska W, Battello N, et al. Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine 2020; 54: 102699. doi: 10.1016/j.ebiom.2020.102699 PMID: 32330875
  110. Gupta SK, Singh P, Ali V, Verma M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol Rev 2020; 14(2): 448. doi: 10.4081/oncol.2020.448 PMID: 32676170
  111. Ward RA, Fawell S, Floc’h N, Flemington V, McKerrecher D, Smith PD. Challenges and opportunities in cancer drug resistance. Chem Rev 2021; 121(6): 3297-351. doi: 10.1021/acs.chemrev.0c00383 PMID: 32692162
  112. Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: The architect of drug resistance. Nat Rev Urol 2020; 17(5): 292-307. doi: 10.1038/s41585-020-0298-8 PMID: 32203305
  113. Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019; 19(10): 587-602. doi: 10.1038/s41568-019-0186-9 PMID: 31492927
  114. Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in medicine to address the challenge of cancer drug resistance: From micro- and nanotechnologies to computational and mathematical modeling. Chem Rev 2021; 121(6): 3352-89. doi: 10.1021/acs.chemrev.0c00356 PMID: 33152247
  115. Frame FM, Noble AR, Klein S, et al. Tumor heterogeneity and therapy resistance-implications for future treatments of prostate cancer. J Cancer Metastasis Treat 2017; 3(12): 302-14. doi: 10.20517/2394-4722.2017.34
  116. Mullard A. New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov 2014; 13(12): 877. doi: 10.1038/nrd4507 PMID: 25435204
  117. Govers TM, Hessels D, Vlaeminck-Guillem V, et al. Cost-effectiveness of SelectMDx for prostate cancer in four European countries: A comparative modeling study. Prostate Cancer Prostatic Dis 2019; 22(1): 101-9. doi: 10.1038/s41391-018-0076-3 PMID: 30127462
  118. Walter FM, Emery JD, Mendonca S, et al. Symptoms and patient factors associated with longer time to diagnosis for colorectal cancer: Results from a prospective cohort study. Br J Cancer 2016; 115(5): 533-41. doi: 10.1038/bjc.2016.221 PMID: 27490803
  119. Vine MF, Calingaert B, Berchuck A, Schildkraut JM. Characterization of prediagnostic symptoms among primary epithelial ovarian cancer cases and controls. Gynecol Oncol 2003; 90(1): 75-82. doi: 10.1016/S0090-8258(03)00175-6 PMID: 12821345
  120. Umar AA, Atabo SM. A review of imaging techniques in scientific research/clinical diagnosis. MOJ Anat & Physiol 2019; 6(5): 175-83.
  121. Koss LG. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 1989; 261(5): 737-43. doi: 10.1001/jama.1989.03420050087046 PMID: 2642983
  122. Greegor DH. Occult blood testing for detection of asymptomatic colon cancer. Cancer 1971; 28(1): 131-4. doi: 10.1002/1097-0142(197107)28:13.0.CO;2-I PMID: 5110619
  123. Holmström B, Johansson M, Bergh A, Stenman UH, Hallmans G, Stattin P. Prostate specific antigen for early detection of prostate cancer: Longitudinal study. BMJ 2009; 339(sep24 1): b3537. doi: 10.1136/bmj.b3537 PMID: 19778969
  124. Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 2014; 114(12): 6130-78. doi: 10.1021/cr200359p PMID: 24779710
  125. Chang Z, Zhou H, Yang C, et al. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J Mater Chem B Mater Biol Med 2020; 8(23): 5019-25. doi: 10.1039/D0TB00403K PMID: 32393955
  126. He S, Li J, Chen M, et al. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int J Nanomedicine 2020; 15: 8451-63. doi: 10.2147/IJN.S265134 PMID: 33149586
  127. Stern E, Vacic A, Rajan NK, et al. Label-free biomarker detection from whole blood. Nat Nanotechnol 2010; 5(2): 138-42. doi: 10.1038/nnano.2009.353 PMID: 20010825
  128. Dart A. Catching cancer. Nat Rev Cancer 2020; 20(6): 299. doi: 10.1038/s41568-020-0268-8 PMID: 32358522
  129. Loynachan CN, Soleimany AP, Dudani JS, et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat Nanotechnol 2019; 14(9): 883-90. doi: 10.1038/s41565-019-0527-6 PMID: 31477801
  130. Salinas HR, Miyasato DL, Eremina OE, et al. A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection. Biomater Sci 2021; 9(2): 482-95. doi: 10.1039/D0BM01099E PMID: 32812951
  131. Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat Nanotechnol 2017; 12(12): 1169-75. doi: 10.1038/nnano.2017.176 PMID: 28892102
  132. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017; 2(7): 17024. doi: 10.1038/natrevmats.2017.24 PMID: 29075517
  133. Liu D, Zhou Z, Wang X, et al. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials 2020; 244: 119979. doi: 10.1016/j.biomaterials.2020.119979 PMID: 32200104
  134. Bitonto V, Alberti D, Ruiu R, Aime S, Geninatti Crich S, Cutrin JC. L-ferritin: A theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release 2020; 319: 300-10. doi: 10.1016/j.jconrel.2019.12.051 PMID: 31899271
  135. Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and nanomaterials-based recent approaches in upgraded targeting and management of cancer: A review. Cancers 2022; 15(1): 162. doi: 10.3390/cancers15010162 PMID: 36612158
  136. Liu Y, Ji X, Tong WWL, et al. Engineering multifunctional rnai nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew Chem Int Ed 2018; 57(6): 1510-3. doi: 10.1002/anie.201710144 PMID: 29276823
  137. Yu W, Lin R, He X, et al. Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharm Sin B 2021; 11(9): 2924-36. doi: 10.1016/j.apsb.2021.04.006 PMID: 34589405
  138. Zhang J, Huang L, Ge G, Hu K. Emerging epigenetic‐based nanotechnology for cancer therapy: Modulating the tumor microenvironment. Adv Sci 2023; 10(7): 2206169. doi: 10.1002/advs.202206169 PMID: 36599655
  139. Wu P, Han J, Gong Y, Liu C, Yu H, Xie N. Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: Current advances and applications. Pharmaceutics 2022; 14(10): 1990. doi: 10.3390/pharmaceutics14101990 PMID: 36297426
  140. Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor microenvironment regulation and cancer targeting therapy based on nanoparticles. J Funct Biomater 2023; 14(3): 136. doi: 10.3390/jfb14030136 PMID: 36976060

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers