Development and Characterization of Lipid Nanoparticles Loaded with Antipsychotic Drugs using Central Composite Design


如何引用文章

全文:

详细

Background:Fluoxetine and olanzapine combination tablets are available in the market for oral administration in the treatment of depression, but fluoxetine has been shown to have a dose-related side effect due to its high oral dose and ability to undergo excessive first-pass metabolism. Olanzapine has low solubility and low bioavailability.

Objective:The objective of this study was to prepare lipid nanoparticles containing fluoxetine and olanzapine to enhance the solubility and dissolution profile of the drugs.

Methods:Lipid nanoparticles (LNs) were prepared by high-speed homogenization using the ultrasonication method. Different lipids and surfactants were used to screen out the best lipids, surfactants, and their ratio in the preparation of lipid nanoparticles. Drug and polymer compatibil-ity was examined using FTIR and DSC studies. The formulation was optimized using the central composite design to establish functional relationship between independent variables and respons-es. Optimized batch was characterized using particle size, PDI, zeta potential, % EE, % CDR, and stability.

Results:Phase solubility study revealed FLX to have highest solubility in stearic acid and oleic acid, whereas OLZ showed highest solubility in Precirol ATO 5 and oleic acid. Poloxamer 188 was selected on the basis of high entrapment efficiency of the drug. In LNs, no significant interaction between drug and polymer was confirmed by DSC and FTIR. The particle size of optimized batch was found to be 411.5 nm with 0.532 PDI and - 9.24 mV zeta potential. For FLX and OLZ, the %EE and %CDR after 8h were found to be more than 90%. No significant change in %EE and %CDR of the formulation was observed after 4 weeks of storage.

Conclusion:Experimental results demonstrated excellent drug entrapment as well as controlled release behavior from optimized LNs of FLX and OLZ at reduced dosage frequency.

作者简介

Ayushi Patel

Department of Pharmaceutics, Anand Pharmacy College

编辑信件的主要联系方式.
Email: info@benthamscience.net

Chetna Modi

Department of Pharmaceutics, Anand Pharmacy College

Email: info@benthamscience.net

Vaishali Thakkar

Department of Pharmaceutics, Anand Pharmacy College

Email: info@benthamscience.net

Hardik Rana

Department of Pharmaceutics, Anand Pharmacy College

Email: info@benthamscience.net

Dipika Chavda

Department of Pharmaceutics, Anand Pharmacy College

Email: info@benthamscience.net

参考

  1. Hanwella R, De Silva V. Diagnosis and management of depression. Ceylon Med J 2008; 53(2): 60-2. doi: 10.4038/cmj.v53i2.236 PMID: 18678125
  2. Amsterdam JD, Shults J. Comparison of fluoxetine, olanzapine, and combined fluoxetine plus olanzapine initial therapy of bipolar type I and type II major depression—lack of manic induction. J Affect Disord 2005; 87(1): 121-30. doi: 10.1016/j.jad.2005.02.018 PMID: 15923042
  3. Drug Bank. Fluoxetine 1965. Available From: https://go.drugbank.com/drugs/DB00472
  4. Fluoxetine. 2023. Available From: https://en.wikipedia.org/wiki/Fluoxetine
  5. Nishtha P, Dipal P, Patel D, Patel PNP, Patel DM. Formulation and Evaluation of Fast Disintegrating Tablets of Fluoxetine and Olanzapine. J Pharm Sci Bioscientific Res 2016; 6(5): 611-20.
  6. Vitorino C, Silva S, Gouveia F, Bicker J, Falcão A, Fortuna A. QbD-driven development of intranasal lipid nanoparticles for depression treatment. Eur J Pharm Biopharm 2020; 153: 106-20. doi: 10.1016/j.ejpb.2020.04.011 PMID: 32525033
  7. Gadhave D, Choudhury H, Kokare C. Neutropenia and leukopenia protective intranasal olanzapine-loaded lipid-based nanocarriers engineered for brain delivery. Appl Nanosci 2019; 9(2): 151-68. doi: 10.1007/s13204-018-0909-3
  8. Patel RB, Patel MR, Bhatt KK, Patel BG, Gaikwad RV. Evaluation of brain targeting efficiency of intranasal microemulsion containing olanzapine: Pharmacodynamic and pharmacokinetic consideration. Drug Deliv 2016; 23(1): 307-15. doi: 10.3109/10717544.2014.912694 PMID: 24845478
  9. Shah SN, Shahzad W. Shabana Naz Shah, Waseem Shahzad. Manufacturing of New Formulation of Olanzepine + Fluoxetine Capsules 6mg/25mg. International Journal of Clinical Medicine Research International Journal of Clinical Medicine Research 2014; 1(5): 172-5.
  10. Patel RB/. Formulation consideration and characterization of microemulsion drug delivery system for transnasal administration of carbamazepine. Bulletin of Faculty of Pharmacy, Cairo University 2013; 51(2): 243-53.
  11. Aher SA, Tekade AR. Transnasal Delivery of Fluoxetine HCL to Brain for Treating Depression. Theranostics of Brain, Spine & Neural Disorders 2019; 4(2): 1-7.
  12. Mante PK, Adomako NO, Antwi P, Kusi-Boadum NK, Osafo N. Solid-lipid nanoparticle formulation improves antiseizure action of cryptolepine. Biomed Pharmacother 2021; 137: 111354. doi: 10.1016/j.biopha.2021.111354 PMID: 33561642
  13. Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021; 11(4): 925-40. doi: 10.1016/j.apsb.2021.02.012 PMID: 33996407
  14. Fahmy UA, Ahmed OAA, Badr-Eldin SM, et al. Optimized nanostructured lipid carriers integrated into in situ nasal gel for enhancing brain delivery of flibanserin. Int J Nanomedicine 2020; 15: 5253-64. doi: 10.2147/IJN.S258791 PMID: 32801690
  15. Tapia-Hernández JA, Rodríguez-Felix F, Juárez-Onofre JE, et al. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111: 451-71. doi: 10.1016/j.foodres.2018.05.036 PMID: 30007708
  16. Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid Nanoparticles for Nasal/Intranasal Drug Delivery. Crit Rev Ther Drug Carrier Syst 2017; 34(3): 257-82. doi: 10.1615/CritRevTherDrugCarrierSyst.2017018693 PMID: 28845761
  17. Schubert MA, Müller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): Influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 2005; 61(1-2): 77-86. doi: 10.1016/j.ejpb.2005.03.006 PMID: 16011893
  18. Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods 2022; 199: 3-8. doi: 10.1016/j.ymeth.2021.05.003 PMID: 33992771
  19. Yasir M, Vir Singh Sara U, Som I, Gaur P, Singh M, Ameeduzzafar. . Nose to Brain Drug Delivery: A Novel Approach Through Solid Lipid Nanoparticles. Curr Nanomed 2016; 6(2): 105-32. doi: 10.2174/2468187306666160603120318
  20. Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, et al. Micro- and nanoparticles by electrospray: Advances and applications in foods. J Agric Food Chem 2015; 63(19): 4699-707. doi: 10.1021/acs.jafc.5b01403 PMID: 25938374
  21. Wavikar PR, Vavia PR. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery. J Liposome Res 2015; 25(2): 141-9.
  22. Rodríguez-Félix F, Del-Toro-Sánchez CL, Javier Cinco-Moroyoqui F, et al. Preparation and Characterization of Quercetin-Loaded Zein Nanoparticles by Electrospraying and Study of In Vitro Bioavailability. J Food Sci 2019; 84(10): 2883-97. doi: 10.1111/1750-3841.14803 PMID: 31553062
  23. Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 2017; 7(1-2): 47-57. doi: 10.1007/s13204-017-0547-1
  24. Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, et al. Gallic Acid-Loaded Zein Nanoparticles by Electrospraying Process. J Food Sci 2019; 84(4): 818-31. doi: 10.1111/1750-3841.14486 PMID: 30802954
  25. Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, et al. Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019; 90: 111-32. doi: 10.1016/j.tifs.2019.06.005
  26. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 27-40. doi: 10.3109/21691401.2014.909822 PMID: 24813223
  27. Cunha S, Costa CP, Moreira JN, Lobo JMS, Silva AC. Journal Pre. Nanomedicine (Lond) 2020; 2020: 102206. doi: 10.1016/j.nano.2020.102206
  28. Beg S, Swain S, Rahman M, Hasnain MS, Imam SS. Application of Design of Experiments (DoE. Pharmaceutical Quality by Design: Principles and Applications. Amsterdam: Elsevier 2019; pp. 43-64. doi: 10.1016/B978-0-12-815799-2.00003-4
  29. Chettupalli AK. Design, Formulation, In-Vitro and Ex-Vivo Evaluation of Atazanavir Loaded Cubosomal Gel. Biointerface Res Appl Chem 2021; 11(4): 12037-54.
  30. Patel S, Chavhan S, Soni H, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 2011; 19(6): 468-74. doi: 10.3109/1061186X.2010.523787 PMID: 20958095
  31. Mohd Y, Chauhan I, Gaur PK. Solid lipid nanoparticles for nose to brain delivery of donepezil: Formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 2018; 46(8): 1838-51.
  32. Daswadkar SC, Atole AV. Formulation and Evaluation of Solid Lipid Nanoparticles of Olanzapine for the Treatment of Psychosis. J Drug Deliv Ther 2020; 10(5-s): 25-31. doi: 10.22270/jddt.v10i5-s.4440
  33. Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int J Pharm 2017; 527(1-2): 1-11. doi: 10.1016/j.ijpharm.2017.05.029 PMID: 28522423
  34. Yasir M, Chauhan I, Zafar A, et al. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2021; 61: 102164. doi: 10.1016/j.jddst.2020.102164
  35. Natarajan J, Baskaran M, Humtsoe LC, Vadivelan R, Justin A. Enhanced brain targeting efficacy of Olanzapine through solid lipid nanoparticles. Artif Cells Nanomed Biotechnol 2017; 45(2): 364-71. doi: 10.3109/21691401.2016.1160402 PMID: 27002542
  36. Youssef NAHA, Kassem AA, Farid RM, Ismail FA. EL-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm 2018; 548(1): 609-24. doi: 10.1016/j.ijpharm.2018.07.014 PMID: 30033394
  37. Prajapati JB, Patel GC. Nose to brain delivery of Rotigotine loaded solid lipid nanoparticles: Quality by design based optimization and characterization. J Drug Deliv Sci Technol 2021; 63: 102377. doi: 10.1016/j.jddst.2021.102377
  38. Akbari J, Saeedi M, Ahmadi F, et al. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27(5): 525-44. doi: 10.1080/10837450.2022.2084554 PMID: 35635506
  39. Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res Int 2017; 2017: 1-18. doi: 10.1155/2017/5984014 PMID: 28243600
  40. Patel HP, Gandhi PA, Chaudhari PS, et al. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies. J Drug Deliv Sci Technol 2021; 64: 102533. doi: 10.1016/j.jddst.2021.102533
  41. Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011; 63(3): 342-51. doi: 10.1111/j.2042-7158.2010.01225.x PMID: 21749381
  42. Fatouh A, Elshafeey A, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther 2017; 11: 1815-25. doi: 10.2147/DDDT.S102500 PMID: 28684900
  43. Abedi Gaballu F, Abbaspour-Ravasjani S, Mansoori B, et al. Comparative of in-vitro evaluation between erlotinib loaded nanostructured lipid carriers and liposomes against A549 lung cancer cell line. Iran J Pharm Res 2019; 18(3): 1168-79. PMID: 32641930
  44. Mandal A, Das V, Ghosh P, Ghosh S. Anti-diabetic effect of friedelantriterpenoids in streptozotocin induced diabetic rat. Nat Prod Commun 2015; 10(10): 1934578X1501001. doi: 10.1177/1934578X1501001013 PMID: 26669102
  45. Shah P, Chavda K, Vyas B, Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: Role of P-gp inhibition. Drug Deliv Transl Res 2021; 11(3): 1166-85. doi: 10.1007/s13346-020-00839-9 PMID: 32804301
  46. Kunal Jain SS. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Deliv 2014; 22(7): 940-54. doi: 10.3109/10717544.2014.885999
  47. Emami J, Mohiti H, Hamishehkar H, Varshosaz J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res Pharm Sci 2015; 10(1): 17-33. PMID: 26430454
  48. Masjedi M, Azadi A, Heidari R, Mohammadi-Samani S. Nose-to-brain delivery of sumatriptan-loaded nanostructured lipid carriers: Preparation, optimization, characterization and pharmacokinetic evaluation. J Pharm Pharmacol 2020; 72(10): 1341-51. doi: 10.1111/jphp.13316 PMID: 32579251
  49. Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv 2016; 23(4): 1326-34. doi: 10.3109/10717544.2014.975382 PMID: 25367836
  50. Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: In vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv 2015; 12(2): 181-94. doi: 10.1517/17425247.2014.945416 PMID: 25164097
  51. Dange S, Kamble M, Bhalerao K, et al. Formulation and evaluation of venlafaxine nanostructured lipid carriers. J Bionanosci 2014; 8(2): 81-9. doi: 10.1166/jbns.2014.1209
  52. Yasir M, Sara UVS, Sara S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B 2014; 4(6): 454-63. doi: 10.1016/j.apsb.2014.10.005 PMID: 26579417
  53. Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and In Vitro Skin Permeation of Meloxicam-Loaded Liposomes versus Transfersomes. J Drug Deliv 2011; 2011: 1-9. doi: 10.1155/2011/418316 PMID: 21490750
  54. Seedher N, Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm Dev Technol 2009; 14(2): 185-92. doi: 10.1080/10837450802498894 PMID: 19519190
  55. Dalençon F, Amjaud Y, Lafforgue C, Derouin F, Fessi H. Atovaquone and rifabutine-loaded nanocapsules: Formulation studies. Int J Pharm 1997; 153(1): 127-30. doi: 10.1016/S0378-5173(97)00076-8
  56. Ammar HO, Ghorab MM, Mahmoud AA, Higazy IM. Lamotrigine loaded poly-ɛ-(d,l-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur J Pharm Sci 2018; 115: 77-87. doi: 10.1016/j.ejps.2018.01.028 PMID: 29341900
  57. Veni DK, Gupta NV. Development and evaluation of Eudragit coated environmental sensitive solid lipid nanoparticles using central composite design module for enhancement of oral bioavailability of linagliptin. Int JPolymeric Mater Polymeric Biomater 2019; 0(0): 1-12.
  58. Sawant K, Dodiya S. Recent advances and patents on solid lipid nanoparticles. Recent Pat Drug Deliv Formul 2008; 2(2): 120-35. doi: 10.2174/187221108784534081 PMID: 19075903
  59. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010; 6(6): 714-29. doi: 10.1016/j.nano.2010.05.005 PMID: 20542144

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024