A Review: Bilosomes as Nanocarriers


如何引用文章

全文:

详细

:Liposomes and niosomes, two vesicular carriers that are prospective candidates for drug delivery, have been used in numerous formulations. New research in this area has led to the development of a ‘niosome-like’ colloidal carrier termed bilosomes. Bilosomes have been designed as prospective vesicular carriers to deliver targeted drugs via parenteral, transdermal, and oral routes.

:These innovative vesicular systems, based on bile salts, have been discussed in detail in the current review. The review addresses the composition of bilosomes, their creation and characterization processes. Previous research on bilosomes has been compiled, along with their applications and advantages over more traditional nanocarriers such as liposomes and niosomes. It also emphasizes the utilization of bilosomes and their stability.

作者简介

Bhawna Sharma

Department of Pharmaceutics, Dr. K.N. MODI Institute of Pharmaceutical Education and Research

编辑信件的主要联系方式.
Email: info@benthamscience.net

Iti Chauhan

Department of Pharmaceutics, I.T.S College of Pharmacy

Email: info@benthamscience.net

参考

  1. Conacher M, Alexander J, Brewer JM. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 2001; 19(20-22): 2965-74. doi: 10.1016/S0264-410X(00)00537-5 PMID: 11282208
  2. Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. Front Life Sci 2013; 7(3-4): 112-22. doi: 10.1080/21553769.2013.879925
  3. He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019; 9(1): 36-48. doi: 10.1016/j.apsb.2018.06.005 PMID: 30766776
  4. Aditya NP, Espinosa YG, Norton IT. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol Adv 2017; 35(4): 450-7. doi: 10.1016/j.biotechadv.2017.03.012 PMID: 28377276
  5. Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: A review. Colloids Surf B Biointerfaces 2021; 197: 111389. doi: 10.1016/j.colsurfb.2020.111389 PMID: 33075659
  6. Van Tran V, Moon JY, Lee YC. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release 2019; 300: 114-40. doi: 10.1016/j.jconrel.2019.03.003 PMID: 30853528
  7. Ahmed S, Kassem MA, Sayed S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine 2020; 15: 9783-98. doi: 10.2147/IJN.S278688 PMID: 33324052
  8. Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: Development, challenges and opportunities. Drug Discov Today 2016; 21(6): 888-99. doi: 10.1016/j.drudis.2016.03.013 PMID: 27038539
  9. Chilkawar R, Nanjwade B, Nwaji M, Idris S, Mohamied A. Bilosomes based drug delivery system. J Chem Appl 2015; 2(5)
  10. Pavlović N, Goločorbin-Kon S, Ðanić M, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol 2018; 9: 1283. doi: 10.3389/fphar.2018.01283 PMID: 30467479
  11. Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015; 10(2): 81-98. doi: 10.1016/j.ajps.2014.09.004
  12. Vyas SP, Khar RK. Targeted & controlled drug delivery: novel carrier systems. CBS publishers & distributors 2004.
  13. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 2011; 1(4): 208-19. doi: 10.1016/j.apsb.2011.09.002
  14. Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1663-73. doi: 10.1016/j.addr.2008.09.002 PMID: 18845195
  15. Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano‐bilosomes. Br J Pharmacol 2011; 164(2b): 820-7. doi: 10.1111/j.1476-5381.2011.01452.x PMID: 21506959
  16. Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 2013; 21(3): 291-9. doi: 10.3109/1061186X.2012.747528 PMID: 30952177
  17. Aburahma MH. Bile salts-containing vesicles: Promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 2016; 23(6): 1847-67. PMID: 25390191
  18. Mann JFS, Scales HE, Shakir E, et al. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 2006; 38(2): 90-5. doi: 10.1016/j.ymeth.2005.11.002 PMID: 16414269
  19. Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 2008; 11(1): 59-66. doi: 10.18433/J3K01M PMID: 18445364
  20. Chen D, Wang X, Chen L, He J, Miao Z, Shen J. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization. Acta Pharmacol Sin 2011; 32(5): 664-72. doi: 10.1038/aps.2011.7 PMID: 21516131
  21. Chen Y, Lu Y, Chen J, et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 2009; 376(1-2): 153-60. doi: 10.1016/j.ijpharm.2009.04.022 PMID: 19394416
  22. Niu M, Tan Y, Guan P, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: A mechanistic study. Int J Pharm 2014; 460(1-2): 119-30. doi: 10.1016/j.ijpharm.2013.11.028 PMID: 24275447
  23. Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method. Mol Pharm 2013; 10(8): 3076-89. doi: 10.1021/mp400154a PMID: 23758289
  24. Aziz DE, Abdelbary AA, Elassasy AI. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: In vitro characterization, ex vivo permeation and in vivo skin deposition study. J Liposome Res 2019; 29(1): 73-85. doi: 10.1080/08982104.2018.1430831 PMID: 29355060
  25. Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine 2019; 14: 6555-74. doi: 10.2147/IJN.S213613 PMID: 31616143
  26. Waglewska E, Pucek-Kaczmarek A, Bazylińska U. Self-assembled bilosomes with stimuli-responsive properties as bioinspired dual-tunable nanoplatform for pH/temperature-triggered release of hybrid cargo. Colloids Surf B Biointerfaces 2022; 215: 112524. doi: 10.1016/j.colsurfb.2022.112524 PMID: 35500532
  27. Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in viv evaluation. J Drug Deliv Sci Technol 2020; 59: 101910. doi: 10.1016/j.jddst.2020.101910
  28. Alhakamy NA, Caruso G, Al-Rabia MW, et al. Piceatannol-loaded bilosome-stabilized zein protein exhibits enhanced cytostatic and apoptotic activities in lung cancer cells. Pharmaceutics 2021; 13(5): 638. doi: 10.3390/pharmaceutics13050638 PMID: 33947103
  29. Abbas H, Gad HA, Khattab MA, Mansour M. The Tragedy of Alzheimer’s Disease: Towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics 2021; 13(10): 1635. doi: 10.3390/pharmaceutics13101635 PMID: 34683928
  30. El Taweel MM, Aboul-Einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery. Pharmaceutics 2021; 13(11): 1828. doi: 10.3390/pharmaceutics13111828 PMID: 34834242
  31. Abdelbary AA, Abd-Elsalam WH, Al-mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm 2016; 513(1-2): 688-96. doi: 10.1016/j.ijpharm.2016.10.006 PMID: 27717916
  32. Alsaidan OA, Zafar A, Yasir M, Alzarea SI, Alqinyah M, Khalid M. Development of ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: Optimization, in-vitro characterization, ex-vivo permeation, and antimicrobial study. Gels 2022; 8(11): 687. doi: 10.3390/gels8110687 PMID: 36354595
  33. Nemr AA, El-Mahrouk GM, Badie HA. Hyaluronic acid-enriched bilosomes: An approach to enhance ocular delivery of agomelatine via D-optimal design: Formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Deliv 2022; 29(1): 2343-56. doi: 10.1080/10717544.2022.2100513 PMID: 35869684
  34. Janga KY, Tatke A, Balguri SP, et al. Ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: In vitro permeability, cytotoxicity and in vivo evaluation. Artif Cells Nanomed Biotechnol 2018; 46(S1): 1039-50.
  35. Al-mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 2015; 485(1-2): 329-40. doi: 10.1016/j.ijpharm.2015.03.033 PMID: 25796122
  36. Khalil RM, Abdelbary A, Kocova El-Arini S, Basha M, El-Hashemy HA. Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride: in vitro and ex vivo optimization. J Liposome Res 2019; 29(2): 171-82. doi: 10.1080/08982104.2018.1524482 PMID: 30221568
  37. Mishra N, Shailja T, Bhuvaneshwar V. Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 2010; 19: 67-78.
  38. Moses OO, Amit K, Zhengrong C. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2011; 9: 1095-107.
  39. Shalaby WSW. Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopathol 1995; 74(2): 127-34. doi: 10.1006/clin.1995.1019 PMID: 7828366
  40. Rajput T, Chauhan MK. Bilosome: A bile salt based novel carrier system gaining interest in pharmaceutical research. J Drug Deliv Ther 2017; 7(5): 4-16. doi: 10.22270/jddt.v7i5.1479
  41. Preparation of non-ionic surfactant vesicles and variants. WO Patent 2018011553A2, 2018.
  42. David E. Methods for preparing vesicles and formulations produced therefrom, international publication. WO Patent 2011005769A1, 2017.
  43. Diaz-Mitoma F. Compositions and methods for treating influenza. US Patent, US9603920B2, 2017.
  44. Suvarna V, Mallya R, Deshmukh K, Sawant B, Khan TA, Omri A. Novel vesicular bilosomal delivery systems for dermal/transdermal applications. Curr Drug Deliv 2023. PMID: 37424346
  45. Karunakaran B, Gupta R, Patel P, et al. Emerging trends in lipid-based vaccine delivery: A special focus on developmental strategies, fabrication methods, and applications. Vaccines 2023; 11(3): 661. doi: 10.3390/vaccines11030661 PMID: 36992244
  46. Elsheikh MA, Elnaggar YSR, Abdallah OY. Rationale employment of cell culture versus conventional techniques in pharmaceutical appraisal of nanocarriers. J Control Release 2014; 194: 92-102. doi: 10.1016/j.jconrel.2014.08.019 PMID: 25194779

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024