Nanotechnology in Drug Delivery: Overcoming Poor Solubility Challenges through Nanoformulations


Cite item

Full Text

Abstract

:The pharmaceutical sector continues to face difficulties with poorly soluble drug solubility. Insufficiently soluble drugs have low bioavailability, and their effectiveness is frequently affected. Numerous approaches have been developed in response to this challenge, including using various dosage forms, solid dispersions, nano-suspensions, self-emulsifying drug delivery systems, and cyclodextrin complexes. By improving drug dissolving, decreasing drug particle size, and increasing drug dispersion, these dosage forms seek to increase drug solubility. Nanotechnology is one of the latest advances that has the potential to revolutionize the delivery of drugs and significantly improve the solubility of drugs that are now poorly soluble. Since they have a larger surface area and can pass through biological barriers, nanoparticles are particularly well suited for the delivery of drugs. These technologies can potentially enable the development of more effective and efficient drug formulations for the treatment of various diseases. In addition, the review highlights recent advances in the field, including emerging technologies such as nanotechnology, which can revolutionize drug delivery and significantly improve the solubility of poorly soluble drugs with their potential applications.

About the authors

Atul Chaudhary

Department of Pharmacy, Banasthali Vidyapith

Author for correspondence.
Email: info@benthamscience.net

Sharda Shambhakar

Department of Pharmacy, Banasthali Vidyapith

Email: info@benthamscience.net

References

  1. Kumari L, Choudhari Y, Patel P, et al. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life 2023; 13(5): 1099. doi: 10.3390/life13051099 PMID: 37240744
  2. Kumar LA, Pattnaik G, Satapathy BS, Patro CS, Naik S, Dash AK. Solubility enhancement techniques: Updates and prospectives. J Pharm Negat Results 2022; 13: 2847-55.
  3. Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202: 115111. doi: 10.1016/j.addr.2023.115111 PMID: 37820982
  4. Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68: 1-11. doi: 10.1016/j.plipres.2017.07.001 PMID: 28778472
  5. van der Merwe J, Steenekamp J, Steyn D, Hamman J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability In: Pharmaceutics Multidisciplinary digital publishing institute. 2020; 12: p. (5)393. doi: 10.3390/pharmaceutics12050393
  6. Balk A, Wiest J, Widmer T, Galli B, Holzgrabe U, Meinel L. Transformation of acidic poorly water soluble drugs into ionic liquids. Eur J Pharm Biopharm 2015; 94: 73-82. doi: 10.1016/j.ejpb.2015.04.034 PMID: 25976317
  7. Khadka P, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability In: Asian Journal of Pharmaceutical Sciences. Elsevier 2014; 9: pp. (6)304-16. doi: 10.1016/j.ajps.2014.05.005
  8. Kumar S, Singh P. The Pharma Innovation Journal 2016; 5(1): 23-28 Various techniques for solubility enhancement: An overview 2016. Available from: www.thepharmajournal.com Accessed: Mar. 17, 2023. Online.
  9. Mishra S, Verma P, Gupta S, Pandey S, Ojha S. Nanocarrier and herbal based transdermal patch: An advantage over other drug delivery systems In: Ann Ayurvedic Med. 2022; pp. 145-56. doi: 10.5455/AAM.11486
  10. Asim M, Nazir M, Chauhdary Z, et al. Enhanced solubility and biological activity of dexibuprofen-loaded silica-based ternary solid dispersions. Pharmaceutics 2023; 15(2): 399. doi: 10.3390/pharmaceutics15020399 PMID: 36839721
  11. Jaiswal P, Mishra A, Kesharwani D, Das Paul S. Overview on ocular drug delivery through colloidal nano-suspension. Res J Pharm Technol 2023; 16(3): 1533-9. doi: 10.52711/0974-360X.2023.00251
  12. Kumar A, Sharma S, Kamble R. Self emulsifying drug delivery system (SEDDS): Future aspects. Int J Pharm Pharm Sci 2010; 2 (SUPPL. 4): 7-13.
  13. Noreen S, Maqbool I, Ijaz M, Tanveer S. Cyclodextrin inclusion complexes: Novel techniques to improve solubility of poorly soluble drugs: A review. Global Pharmaceutical Sciences Review 2016; I(I): 29-34. doi: 10.31703/gpsr.2016(I-I).04
  14. Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience 2012; 2(4): 227-50. doi: 10.1007/s12668-012-0060-7
  15. Satyanarayana SD, Abu Lila AS, Moin A, et al. Ocular delivery of bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma. Pharmaceuticals 2023; 16(7): 1001. doi: 10.3390/ph16071001 PMID: 37513913
  16. Ojha S, Yadav S, Ajeet B, Aggarwal S, Gupta K, Mishra S. Considering the conception of nanotechnology integrated on herbal formulation for the management of cancer. Lett Drug Des Discov 2022; 19. doi: 10.2174/1570180819666220901093732
  17. Mishra S. Hyperbranched nanostructure drug delivery carrier: Dendrimer. Nanosci Nanotechnol Asia 2023; 13(1): e140223213668. doi: 10.2174/2210681213666230214103113
  18. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: Importance and enhancement techniques. ISRN Pharm 2012; 2012: 1-10. doi: 10.5402/2012/195727 PMID: 22830056
  19. Sharma M, Sharma R, Jain DK. ScientificaNanotechnology Based Approaches for Enhancing Oral Bioavailability of Poorly Water Soluble Antihypertensive Drugs In: Scientifica. Hindawi Limited 2016; p. 2016. doi: 10.1155/2016/8525679
  20. Mirza RM, Ahirrao SP, Kshirsagar SJ. A nanocrystal technology: To enhance solubility of poorly water soluble drugs. J Appl Pharm Res 2017; 5(1): 1-13. Online. Available: www.japtronline.com
  21. Singh N, Maurta R, Mishra S, Jain D. Preparation and evaluation of medicated formulation for dry eye. Nanosci Nanotechnol Asia 2023; 13(4): e260523217386. doi: 10.2174/2210681213666230526152322
  22. Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 2014; 31: 531-42. doi: 10.1016/j.rser.2013.12.033
  23. Rostami E. Progresses in targeted drug delivery systems using chitosan nanoparticles in cancer therapy: A mini-review. J Drug Deliv Sci Technol 2020; 58: 101813. doi: 10.1016/j.jddst.2020.101813
  24. Conley R, Gupta SK, Sathyan G. Clinical spectrum of the osmotic-controlled release oral delivery system (OROS), an advanced oral delivery form. Curr Med Res Opin 2006; 22(10): 1879-92. doi: 10.1185/030079906X132613 PMID: 17022845
  25. Padalkar AN, Shahi SR, Thube MW. Microparticles: An approach for betterment of drug delivery systems. Int J Pharm Res Dev 2011; 3: 99-115.
  26. Tran P, Park JS. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int J Pharm 2021; 610: 121247. doi: 10.1016/j.ijpharm.2021.121247 PMID: 34740762
  27. Cui B, Feng L, Wang C, et al. Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization. PLoS One 2016; 11(8): e0160877. doi: 10.1371/journal.pone.0160877 PMID: 27500828
  28. Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release 2014; 190: 240-53. doi: 10.1016/j.jconrel.2014.05.057 PMID: 24929039
  29. Sharma A, Jain CP. Solid dispersion: A promising technique to enhance solubility of poorly water soluble drug. Int J Drug Deliv 2011; 1(2): 149-70.
  30. Konno H, Taylor LS. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 2008; 25(4): 969-78. doi: 10.1007/s11095-007-9331-3 PMID: 17520180
  31. Sharma KS, Sahoo J, Agrawal S, Kumari A. Solid dispersions: A technology for improving bioavailability. J Anal Pharm Res 2019; 8(4): 127-33. doi: 10.15406/japlr.2019.08.00326
  32. Aziz T, Ullah A, Ali A, et al. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139(29): e52624. doi: 10.1002/app.52624
  33. Tran PHL, Tran TTD. Dosage form designs for the controlled drug release of solid dispersions. Int J Pharm 2020; 581: 119274. doi: 10.1016/j.ijpharm.2020.119274 PMID: 32234566
  34. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 1996; 85(10): 1017-25. doi: 10.1021/js950534b PMID: 8897265
  35. Del Valle EMM. Cyclodextrins and their uses: A review. Process Biochem 2004; 39(9): 1033-46. doi: 10.1016/S0032-9592(03)00258-9
  36. Salústio PJ, et al. Advanced technologies for oral controlled release: Cyclodextrins for oral controlled release. AAPS PharmSciTech 2011; 12(4): 1276-92. doi: 10.1208/s12249-011-9690-2
  37. Jagtap S, Magdum C, Jadge D, Jagtap R. Solubility enhancement technique: A review. Int J Pharm Res 2021; 13(3): 2205-11. doi: 10.31838/ijpr/2021.13.03.121
  38. Wong J, Brugger A, Khare A, et al. Suspensions for intravenous (IV) injection: A review of development, preclinical and clinical aspects. Adv Drug Deliv Rev 2008; 60(8): 939-54. doi: 10.1016/j.addr.2007.11.008 PMID: 18343527
  39. Khan BA, et al. Basics of pharmaceutical emulsions: A review. Afr J Pharm Pharmacol 2011; 5(25): 2715-25. doi: 10.5897/AJPP11.698
  40. Washington C. Stability of lipid emulsions for drug delivery. Adv Drug Deliv Rev 1996; 20(2-3): 131-45. doi: 10.1016/0169-409X(95)00116-O
  41. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394. doi: 10.1016/j.heliyon.2022.e09394 PMID: 35600452
  42. Coimbra M, Isacchi B, van Bloois L, et al. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 2011; 416(2): 433-42. doi: 10.1016/j.ijpharm.2011.01.056 PMID: 21291975
  43. Pawar AY, Naik AK, Jadhav KR. Nanosponges: A novel drug delivery system. Asian J Pharm 2016; 10(4): S456-63. doi: 10.5958/0975-4377.2020.00043.9
  44. Sahu G, Sharma H, Gupta A, Kaur C. Advancements in Microemulsion Based Drug Delivery Systems for Better Therapeutic Effects Int J Pharm Sci Dev Res 2015; 1(1): 8-15. doi: 10.17352/ijpsdr.000003
  45. He CX, He ZG, Gao JQ. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv 2010; 7(4): 445-60. doi: 10.1517/17425241003596337 PMID: 20201713
  46. Shukla T, Upmanyu N, Agrawal M, Saraf S, Saraf S, Alexander A. Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother 2018; 108: 1477-94. doi: 10.1016/j.biopha.2018.10.021 PMID: 30372850
  47. Jadhav K, Shaikh I, Ambade K, Kadam V. Applications of microemulsion based drug delivery system. Curr Drug Deliv 2006; 3(3): 267-73. doi: 10.2174/156720106777731118 PMID: 16848728
  48. Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16. doi: 10.1007/s11095-006-9132-0 PMID: 17109211
  49. Jin G, Ngo HV, Cui JH, Wang J, Park C, Lee BJ. Role of surfactant micellization for enhanced dissolution of poorly water‐soluble cilostazol using poloxamer 407‐based solid dispersion via the anti‐solvent method. Pharmaceutics 2021; 13(5): 662. doi: 10.3390/pharmaceutics13050662 PMID: 34063136
  50. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75. doi: 10.1016/j.drudis.2007.09.005 PMID: 18061887
  51. Rasenack N, Müller BW. Micron-size drug particles: Common and novel micronization techniques. Pharm Dev Technol 2004; 9(1): 1-13. doi: 10.1081/PDT-120027417 PMID: 15000462
  52. Saleem IY, Smyth HDC. Micronization of a soft material: Air-jet and micro-ball milling. AAPS PharmSciTech 2010; 11(4): 1642-9. doi: 10.1208/s12249-010-9542-5 PMID: 21107775
  53. Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int J Pharm 2013; 453(1): 126-41. doi: 10.1016/j.ijpharm.2013.01.019 PMID: 23333709
  54. Huang L, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev 2004; 56(3): 321-34. doi: 10.1016/j.addr.2003.10.007 PMID: 14962584
  55. Raza K. Polymorphism: The phenomenon affecting the performance of drugs. SOJ Pharm Pharm Sci 2014. doi: 10.15226/2374-6866/1/2/00111
  56. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30. doi: 10.1016/j.addr.2007.05.011 PMID: 17597252
  57. Aziz T, et al. Cellulose nanocrystals applications in health, medicine and catalysis In: Journal of Polymers and the Environment. Springer 2021; 29: pp. (7)2062-71. doi: 10.1007/s10924-021-02045-1
  58. Yu L, Reutzel SM, Stephenson GA. Physical characterization of polymorphic drugs: An integrated characterization strategy. Pharm Sci Technol Today 1998; 1(3): 118-27. doi: 10.1016/S1461-5347(98)00031-5
  59. Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv Drug Deliv Rev 2017; 117: 25-46. doi: 10.1016/j.addr.2017.03.002 PMID: 28342786
  60. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 2004; 56(9): 1273-89. doi: 10.1016/j.addr.2003.12.004 PMID: 15109769
  61. Klamt A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J Phys Chem 1995; 99(7): 2224-35. doi: 10.1021/j100007a062
  62. Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids. Adv Drug Deliv Rev 2001; 48(1): 3-26. doi: 10.1016/S0169-409X(01)00097-7 PMID: 11325474
  63. Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: An innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev 2008; 60(3): 399-410. doi: 10.1016/j.addr.2007.08.030 PMID: 17964684
  64. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011; 16(7-8): 354-60. doi: 10.1016/j.drudis.2010.02.009 PMID: 20206289
  65. Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 2009; 71(4): 359-70. doi: 10.4103/0250-474X.57283 PMID: 20502540
  66. Banerjee R, Bhatt PM, Ravindra NV, Desiraju GR. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst Growth Des 2005; 5(6): 2299-309. doi: 10.1021/cg050125l
  67. Patole T, Deshpande A. Co-crystallization-a technique for solubility enhancersement. Int J Pharm Sci Res 2014; 5(9): 3566. Online. Available: doi: 10.13040/IJPSR.0975-8232.5
  68. Jana S, Mandlekar S, Marathe P. Prodrug design to improve pharmacokinetic and drug delivery properties: Challenges to the discovery scientists. Curr Med Chem 2010; 17(32): 3874-908. doi: 10.2174/092986710793205426 PMID: 20858214
  69. Mahato R, Tai W, Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 2011; 63(8): 659-70. doi: 10.1016/j.addr.2011.02.002 PMID: 21333700
  70. Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 2018; 17(8): 559-87. doi: 10.1038/nrd.2018.46 PMID: 29700501
  71. Song N-N, Zhang S, Liu C. Overview of factors affecting oral drug absorption Asian J. Drug Metab Pharmacokinet 2004; 4(3): 167-76. Online. Available: http://www.hktmc.com/ChineseMedia/Magazine/Medicine/ajdmpk/AJDMPK-2004-3/asian2004-3(167-176).pdf
  72. Bassi P, Kaur G. pH modulation: A mechanism to obtain pH-independent drug release. Expert Opin Drug Deliv 2010; 7(7): 845-57. doi: 10.1517/17425247.2010.491508 PMID: 20509776
  73. Taniguchi C, Kawabata Y, Wada K, Yamada S, Onoue S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv 2014; 11(4): 505-16. doi: 10.1517/17425247.2014.881798 PMID: 24472170
  74. Schreier S, Malheiros SVP, de Paula E. Surface active drugs: Self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta Biomembr 2000; 1508(1-2): 210-34. doi: 10.1016/S0304-4157(00)00012-5 PMID: 11090827
  75. Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed 2013; 3(4): 253-66. doi: 10.1016/S2221-1691(13)60060-X PMID: 23620848
  76. Tomita M, Hayashi M, Awazu S. Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J Pharm Sci 1996; 85(6): 608-11. doi: 10.1021/js9504604 PMID: 8773957
  77. Donnelly A, Kellaway IW, Taylor G, Gibson M. Absorption enhancers as tools to determine the route of nasal absorption of peptides. J Drug Target 1998; 5(2): 121-7. doi: 10.3109/10611869808995865 PMID: 9588868
  78. Yang X, Sheng W, Sun GY, Lee JCM. Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochem Int 2011; 58(3): 321-9. doi: 10.1016/j.neuint.2010.12.004 PMID: 21184792
  79. Carpentieri-Rodrigues LN, Zanluchi JM, Grebogi IH. Percutaneous absorption enhancers: Mechanisms and potential. Braz Arch Biol Technol 2007; 50(6): 949-61. doi: 10.1590/S1516-89132007000700006
  80. Yadav A, Tiwari NN, Srivastava SP, Tripathi SM, Mishra S. Bioactive compound containing hepatoprotective activity. Curr Bioact Compd 2023; 19(9): e110423215658. doi: 10.2174/1573407219666230411111304
  81. Kanwal T, Saifullah S, Rehman J, et al. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J Mol Liq 2021; 324: 114774. doi: 10.1016/j.molliq.2020.114774
  82. Maeda Y, Teraoka H, Okada A, et al. Development and evaluation of EDTA-treated rabbits for bioavailability study of chelating drugs using levofloxacin, ciprofloxacin, hemiacetal ester prodrugs, and tetracycline. Pharmaceutics 2023; 15(6): 1589. doi: 10.3390/pharmaceutics15061589 PMID: 37376038
  83. SreeHarsha N, Hiremath JG, Chilukuri S, et al. An approach to enhance dissolution rate of tamoxifen citrate. BioMed Res Int 2019; 2019: 1-11. doi: 10.1155/2019/2161348 PMID: 30800663
  84. Naik A, Pechtold LARM, Potts RO, Guy RH. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J Control Release 1995; 37(3): 299-306. doi: 10.1016/0168-3659(95)00088-7
  85. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules 2015; 20(8): 14451-73. doi: 10.3390/molecules200814451 PMID: 26266402
  86. Sharma P, Varma MVS, Chawla HPS, Panchagnula R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco 2005; 60(11-12): 884-93. doi: 10.1016/j.farmac.2005.08.008 PMID: 16226752
  87. Lu Y, Wang YY, Yang N, et al. Food emulsifier polysorbate 80 increases intestinal absorption of di-(2-ethylhexyl) phthalate in rats. Toxicol Sci 2014; 139(2): 317-27. doi: 10.1093/toxsci/kfu055 PMID: 24675089
  88. Pershing LK, Lambert LD, Knutson K. Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharm Res 1990; 7(2): 170-5. doi: 10.1023/A:1015832903398 PMID: 2308897
  89. Huriez P, Ourghanlian C, Razazi K, et al. Probenecid, an old β-lactams pharmacokinetic enhancer for a renewed use: A retrospective study. Infectious Diseases Now 2022; 52(5): 273-9. doi: 10.1016/j.idnow.2022.05.006 PMID: 35636701
  90. Rengelshausen J, Göggelmann C, Burhenne J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin–clarithromycin interaction. Br J Clin Pharmacol 2003; 56(1): 32-8. doi: 10.1046/j.1365-2125.2003.01824.x PMID: 12848773
  91. Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020; 12(3): 288. doi: 10.3390/pharmaceutics12030288 PMID: 32210127
  92. Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds Front Chem 2022; 10. doi: 10.3389/fchem.2022.850757
  93. Nirbhavane P, Sharma G, Singh B, et al. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf B Biointerfaces 2020; 190: 110902. doi: 10.1016/j.colsurfb.2020.110902 PMID: 32143010
  94. Tatke A, Dudhipala N, Janga K, et al. in situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials 2018; 9(1): 33. doi: 10.3390/nano9010033 PMID: 30591688
  95. Desoqi MH, El-Sawy HS, Kafagy E, Ghorab M, Gad S. Fluticasone propionate–loaded solid lipid nanoparticles with augmented anti-inflammatory activity: optimisation, characterisation and pharmacodynamic evaluation on rats. J Microencapsul 2021; 38(3): 177-91. doi: 10.1080/02652048.2021.1887383 PMID: 33583315
  96. Zhang J, Liu Z, Tao C, et al. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur J Pharm Sci 2020; 144: 105229. doi: 10.1016/j.ejps.2020.105229 PMID: 31958581
  97. Peng Y, Chen L, Ye S, et al. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15(2): 220-36. doi: 10.1016/j.ajps.2020.02.004 PMID: 32373201
  98. Zolk O, Fromm MF. Transporter-mediated drug uptake and efflux: important determinants of adverse drug reactions. Clin Pharmacol Ther 2011; 89(6): 798-805. doi: 10.1038/clpt.2010.354 PMID: 21471963
  99. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies In: British Journal of Pharmacology. Wiley-Blackwell 2012; 165: pp. (5)1260-87. doi: 10.1111/j.1476-5381.2011.01724.x
  100. de Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49. doi: 10.2147/IJN.S596 PMID: 18686775
  101. Shao J, Markowitz JS, Bei D, An G. Enzyme- and transporter-mediated drug interactions with small molecule tyrosine kinase inhibitors. J Pharm Sci 2014; 103(12): 3810-33. doi: 10.1002/jps.24113 PMID: 25308414
  102. Wu W, Lu Y, Qi J. Editor profiles: Guest editors of special issue on enhancement of dissolution and oral bioavailability of poorly water-soluble drugs. Acta Pharm Sin B 2019; 9(1): 1. doi: 10.1016/j.apsb.2019.01.008 PMID: 31245268
  103. Sidat Z, Marimuthu T, Kumar P, et al. Ionic liquids as potential and synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics 2019; 11(2): 96. doi: 10.3390/pharmaceutics11020096 PMID: 30813375
  104. Mahapatra APK, Patil V, Patil R. Solubility enhancement of poorly soluble drugs by using novel techniques: A comprehensive review. Int J Pharm Tech Res 2020; 13(2): 80-93. doi: 10.20902/IJPTR.2019.130211
  105. Surender V, Deepika M. Solid lipid nanoparticles: A comprehensive review. J Chem Pharm Res 2016; 8(8)2016; Available online: www.jocpr.com
  106. Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci 2021; 2(3) doi: 10.7324/JAPS.2012.2322
  107. Pokharana M, Vaishnav R, Goyal A, Shrivastava A. Stability testing guidelines of pharmaceutical products. J Drug Deliv Ther 2018; 8(2) doi: 10.22270/jddt.v8i2.1564
  108. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Adv Drug Deliv Rev 2001; 47(1): 3-19. doi: 10.1016/S0169-409X(00)00118-6 PMID: 11251242
  109. Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev 2016; 100: 116-25. doi: 10.1016/j.addr.2015.12.009 PMID: 26805787
  110. Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine – an overview. Fundam Clin Pharmacol 2009; 23(3): 263-9. doi: 10.1111/j.1472-8206.2009.00692.x PMID: 19527298
  111. Martinelli C, Pucci C, Battaglini M, Marino A, Ciofani G. Antioxidants and nanotechnology: Promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Adv Healthc Mater 2020; 9(3): 1901589. doi: 10.1002/adhm.201901589 PMID: 31854132

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers