Thermal Rigidity Of Machine Tools. Physical Fundamentals. Evaluation and Control. Part 1. System of Rigidity Concepts For Machine Tools

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Basic principles of rigidity estimations and their description in physical processes of elastic deformation as an
important element to be considered in design of metal-cutting machines are discussed in terms of requirements to machine tools accuracy and precision. Besides, influence on the machine tool thermal factors which also lead to temperature errors and cause the accuracy changes of the machine tool are considered.

Full Text

Restricted Access

About the authors

A. P. Kuznetsov

МГТУ «СТАНКИН»

Author for correspondence.
Email: magazine@technosphera.ru

доктор технических наук, профессор кафедры станков

Russian Federation

References

  1. Кузнецов А. П. Эволюция методов оценки точности металлорежущих станков и тенденции ее изменения. Часть 1. Эволюция понятия точность и ее физическая модель // Вестник машиностроения. 2016. № 12. С. 8–16.
  2. Kuznetsov A. P., Koriath H.-J. Energy – information regularities of increasing productivity in metalworking machine tools. EPJ Web Conf. V. 224, 2019. IV International Conference “Modeling of Nonlinear Processes and Systems”, MNPS-2019. PP. 1–8.
  3. Putz M., Koriath H.-J., Kuznetsov A. P. Resource consumption classes of machine tools. Special Issue | HSM 2019 15th International Conference on High Speed Machining October 8–9, 2019, Prague, Czech Republic. MM Science Journal. PP. 3301–3309.
  4. Van de Vijver W., Houben M., Van Brussel H., Reynaerts D. Piezomotors: an enabling technology. Publisher: Nederlandse Vereniging voor Precisietechnologie Mikroniek: 2009; V. 49; iss. 1. PP. 20–27.
  5. Thermo-energetic Design of Machine Tools. Editor Knut Großmann. Springer International Publishing Switzerland. 2015. P. 262.
  6. Тимошенко С. П., Гудьер Дж. Теория упругости. М.: Наука. Главная редакция физико-математической литературы, 1979. 560 с.
  7. Хан X. Теория упругости: Основы линейной теории и ее применения. М.: Мир, 1988. 344 с.
  8. Чернянский П. М. Основы проектирования точных станков. Теория и расчет. М: КНОРУС, 2010. 240 с.
  9. Каминская В. В., Левина З. М., Решетов Д. Н. Станины и корпусные детали металлорежущих станков. Расчет и конструирование. М.: Государственное научно-техническое издательство машиностроительной литературы. 1960. 364 с.
  10. Brecher Chk., Weck M. Machine tools – Design, calculation and metrological assessment.V2.Springer-Verlag GmbH Germany, part of Springer Nature 2021. 840 p.
  11. Кузнецов А. П. О материалах в станкостроении // СТАНКОИНСТРУМЕНТ. 2019. № 1. С. 44–55.
  12. Han Wang, Tianjian Li, Xizhi Sun, Diane Mynors, Tao Wu. Optimal Design Method for Static Precision of Heavy-Duty Vertical Machining Center Based on Gravity Deformation Error Modelling. Processes 2022, 10, 1930, doi.org/10.3390/pr10101930. PP. 1–20.
  13. Левина З. М., Решетов Д. Н. Контактная жесткость машин. М.: Машиностроение, 1971. 264 с.
  14. Portman V. T., Chapsky V. S., Shneor Y., Ayalon E. Machine stiffness rating: Characterization and evaluation in design stage. Procedia CIRP , v. 36, 2015, pp. 111–11.
  15. Кудинов В. А. Динамика станков. М.: Машиностроение, 1967. 360 с.
  16. Rivin E. I. Handbook on Stiffness & Damping in Mechanical Design, ASME Press, New York, NY, 2010. 734 p.
  17. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York, 2012. 360 p.
  18. Chunhui Li, Zhiqiang Song, Xianghua Huang, Hui Zhao, Xuchu Jiang, Xinyong Mao Analysis of Dynamic Characteristics for Machine Tools Based on Dynamic Stiffness Sensitivity. Processes 2021, 9, 2260, pp. 1–16. doi.org/10.3390/pr9122260
  19. Кузнецов А. П. Тепловые процессы в металлорежущих станках. М.: ТЕХНОСФЕРА, 2019. 488 с.
  20. Кузнецов А. П. Тепловой режим металлорежущих станков. М.: МГТУ «СТАНКИН», Янус – К, 2013. 480 с.
  21. Kuznetsov A. P., Koriath H.-J. Thermal stiffness – a key accuracy indicator of the machine tools. MM Science Journal, 2021,| Special Issue on ICTIMT2021. PP. 4548–4555.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Correspondence of changes in achieved accuracy and rigidity depending on the type of processing: 1 – traditional, 2 – precision, 3 – ultra-precision [4]

Download (140KB)
3. Fig.2. Metal-cutting machine as a system in accuracy analysis

Download (419KB)
4. Fig.3. Modern columns of Chiron-Werke machines with different structures of stiffeners [10]

Download (139KB)
5. Fig.4. Machine layouts with optimal rigidity [11]

Download (168KB)
6. Fig.5. Machine and equivalent diagram of rigid beams [12]

Download (402KB)
7. Fig.6. Force contour of the elastic structure of the machine [10]

Download (298KB)
8. Fig.7. Dynamic structure of the machine [17]

Download (128KB)

Copyright (c) 2023 Kuznetsov A.P.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies