Methods of Vibration Suppression in Robotic Machining

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A review of methods to suppress vibrations in robotic machining is considered. Presented the study carried out at the Moscow Polytechnic University in the field of robotised finishing
machining is presented.

Full Text

Restricted Access

About the authors

A. I. Shvarts

Московский политехнический университет

Author for correspondence.
Email: journal@electronics.ru

аспирант кафедры «Технологии и оборудование машиностроения» 

Russian Federation, Москва

D. N. Mironov

Московский политехнический университет

Email: journal@electronics.ru

аспирант кафедры «Технологии и оборудование машиностроения»

Russian Federation, Москва

M. V. Vartanov

Московский политехнический университет

Email: journal@electronics.ru

доктор технических наук, профессор кафедры «Технологии и оборудование машиностроения»

Russian Federation, Москва

References

  1. Pandremenos J., Doukas C., Stavropoulos P., Chryssolouris G. Machining with robots: a critical review // 7th International Conference on Digital Enterprise Technology. Athens, Greece, 2011.
  2. Вартанов М.В., Зинина И. Н., Зотин Д. О. Технологические возможности роботизированной отделочной обработки деталей в условиях многономенклатурного производства // Вестник РГАТУ. 2017. № 1 (40). С. 190–193.
  3. Pan Z., Zhang H. Robotic machining from programming to process control: a complete solution by force control // Industrial Robot. 2015. Vol. 35, no. 5. PP. 400–409.
  4. Sörnmo O., Olofsson B., Schneider U., Robertsson A., Johansson R. Increasing the Milling Accuracy for Industrial Robots Using a Piezo-Actuated High Dynamic Micro Manipulator // 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2012.
  5. Krantz M., Andersson R. Robotized Polishing and Deburring with Force Feedback Control // Master Thesis, Master Degree program in Robotics – University West, Department of Engineering Science. Trollhättan, SWEDEN, 2010.
  6. Zaghbani I. Robotic High-Speed Machining of Aluminum Alloys // Proceedings of the 4th edition of the International Conference on High Speed Machining (ICHSM’2010). Harbin, China, 2011.
  7. Fan Chen, Huan Zhao, Dingwei Li, Lin Chen, Chao Tan, Han Ding. Contact force control and vibration suppression in robotic polishing with a smart end effector, Robotics and Computer-Integrated Manufacturing, 2019, рp. 391–403.
  8. Gienke O., Pan Z., Yuan L. et al. Mode coupling chatter prediction and avoidance in robotic machining process. // Int. J. Adv. Manuf. Technol. 104, 2103–2116 (2019).
  9. Schneider U., Drust M., Ansaloni M. et al. Improving robotic machining accuracy through experimental error investigation and modular compensation. // Int. J. Adv. Manuf. Technol. 85, 3–15 (2016).
  10. Segreto T., Karam S., Tet R. Signal processing and pattern recognition for surface roughness assessment in multiple sensor monitoring of robot-assisted polishing // Int. J. Adv. Manuf. Technol. 90, 1023–1033 (2017). https://doi.org/10.1007/s00170-016-9463-x
  11. Khalick Mohammad A. E., Hong J., Wang D. Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm. // Int. J. Adv. Manuf. Technol. 93, 1463–1471 (2017). https://doi.org/10.1007/s00170-017-0524-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Finishing unit for GTE blades with a smart output link

Download (443KB)
3. Figure 2. Experimental setup for testing the vibration suppression algorithm

Download (1MB)
4. Figure 3. Neural network model with genetic algorithm

Download (259KB)
5. Fig. 4. Composition of the experimental setup: ABB IRB 140 industrial robot, tool spindle, FTN-AXIA80 SI-200-8 / SI-500-20 force transducer

Download (773KB)
6. Fig. 5. Outputs from the force sensor: a - feed rate 4 m / min; spindle speed 1,500 rpm; depth of cut 0.1 mm; b - feed rate 5 m / min, spindle speed 2,000 rpm, depth of cut 0.1 mm

Download (573KB)
7. Fig. 6. Surface profilogram (length of measurements - 10 mm): a - Ra 3.42 μm; b - Ra 2.84 μm

Download (427KB)
8. Figure 7. Profilogram (length of measurements - 10 mm): Ra = 0.9 µm (feed rate 8 m/min, spindle speed 18,000 rpm, depth of cut 0.02 mm)

Download (231KB)

Copyright (c) 2023 Shvarts A.I., Mironov D.N., Vartanov M.V.