Experimental Evidence of Magnetoreception in Grey Seals Halichoerus Grypus Atlantica Nehring, 1886

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Up-to-date magnetobiology data provide enough evidence that weak magnetic fields, whether of artificial nature or connected with the solar and geomagnetic activity, have a certain biological influence. Magnetoreception – a sense of magnetic fields – is considered to play an important role in the orientation and navigation of some land and marine animals. Many marine mammals, both cetaceans and pinnipeds, migrate over long distances. And when magnetoreception in cetaceans is widely discussed among scientists, there aren’t many works about the sense of magnetic field in pinnipeds. We built an experimental stand based on the Helmholtz coils system to study the magnetosensitivity of pinnipeds. We took three mature female grey seals Halichoerus grypus atlantica as study objects. Seals were trained to choose from two or three identical Helmholtz coils the one which was generating the magnetic field at the moment of observations using the “instrumental conditioned reflex” method and method of selecting an object according to given characteristics. In the course of the experiment, we have found that generated magnetic field of 8, 20 and 36 Hz frequency and 110‒130 μT induction is a detectable stimulus for grey seals at the presentation of which they were able to develop a conditioned refl ex. The average rate of correct choices was over 79% during all check tests. Based on the acquired data we can state that grey seals have the ability of magnetoreception.

作者简介

A. Yakovlev

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Email: mmbi@mmbi.info
Murmansk, Russian Federation

A. Zaytsev

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

参考

  1. Winklhofer M. 2010. Magnetoreception. Journal of the Royal Society Interface. 7(2): 131‒134. doi: 10.1098/rsif.2010.0010. focus
  2. Frankel R.B., Blakemore R.P., Wolfe R.S. 1979. Magnetite in freshwater magnetotactic bacteria. Science. 203(4387): 1355–1356. doi: 10.1126/science.203.4387.1355
  3. Kishkinev D., Chernetsov N., Pakhomov A., Heyers D., Mouritsen H. 2015. Eurasian reed warblers compensate for virtual magnetic displacement. Current Biology. 25(19): R822‒R824. doi: 10.1016/j.cub.2015.08.012.
  4. Бреус Т.К., Бинги В.Н., Петрукович А.А. 2016. Магнитный фактор солнечно-земных связей и его влияние на человека: физические проблемы и перспективы. Успехи физических наук. 186(5): 568‒576. doi: 10.3367/UFNr.2015.12.037693
  5. Johnsen S., Lohmann K.J. 2008. Magnetoreception in animals. Physics Today. 61(3): 29‒35. doi: 10.1063/1.2897947
  6. Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature. 558(7708):50‒59. doi: 10.1038/s41586-018-0176-1
  7. Walker M.M., Kirschvink J.L., Ahmed G., Dizon A.E. 1992. Evidence that fin whales respond to the geomagnetic field during migration. Journal of Experimental Biology. 171(1):67–78. doi: 10.1242/jeb.171.1.67
  8. Kremers D., Marulanda J.L., Hausberger M., Lemasson A. 2014. Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields. Naturwissenschaften. 101(11): 907–911. doi: 10.1007/s00114-014-1231-x
  9. Ferrari T.E. 2017. Cetacean beachings correlate with geomagnetic disturbances in Earth’s magnetosphere: an example of how astronomical changes impact the future of life. International Journal of Astrobiology. 16(2): 163–175. doi: 10.1017/S1473550416000252
  10. Kirschvink J.L., Dizon A.E., Westphal J.A. 1986. Evidence from strandings for geomagnetic sensitivity in cetaceans. Journal of Experimental Biology. 120(1): 1–24. doi: 10.1242/jeb.120.1.1
  11. Able K.P. 1980. Mechanisms of orientation, navigation, and homing. In: Animal Migration, Orientation and Navigation. New York, Academic Press: 283–373.
  12. Kling J.W. 1971. Learning: Introductory survey. In: Woodworth and Schlosberg’s experimental psychology. New York, Holt, Rinehart and Winston: 551–613.
  13. Liboff A.R. 2014. Why are living things sensitive to weak magnetic fields? Electromagnetic Biology and Medicine. 33(3): 241–245. doi: 10.3109/15368378.2013.809579
  14. Ioffe M.E. 2004. Brain mechanisms for the formation of new movements during learning: the evolution of classical concepts.Neuroscience and Behavioral Physiology. 34(1): 5–18. doi: 10.1023/B:NEAB.0000003241.12053.47
  15. Mora C.V., Davison M., Wild M., Walker M.M. 2004. Magnetoreception and its trigeminal mediation in the homing pigeon. Nature. 432: 508–511. doi: 10.1038/nature03077
  16. Яковлев А.П., Михайлюк А.Л., Григорьев В.Ф. 2016. Оценка изменений параметров поведения серого тюленя при воздействии на него электромагнитных полей экстремально низких частот в диапазоне 0,01–36 Гц. Вестник МГТУ. 19(1/2): 345–352. doi: 10.21443/1560-9278-2016-1/2-345-352
  17. Яковлев А.П., Ишкулов Д.Г., Зайцев А.А., Трошичев А.Р., Григорьев В.Ф. 2018. Влияние искусственных электромагнитных полей на частотах шумановского резонанса на двигательную активность серого тюленя. Наука Юга России. 14(4): 82‒91. doi: 10.7868/S25000640180410
  18. Яковлев А.П., Зайцев А.А., Ишкулов Д.Г., Григорьев В.Ф. 2019. Влияние низкочастотного электромагнитного поля на работоспособность серых тюленей. Вестник МГТУ. 22(2):266‒275. doi: 10.21443/ 1560-9278-2019-22-2-266-275
  19. Муравейко А.В., Степанюк И.А., Муравейко В.М., Фролова Н.С. 2013. Эффекты влияния электромагнитных полей в области «шумановских резонансов» на активность гидробионтов. Вестник МГТУ. 16(4): 764‒770.
  20. Кузнецов В.Б. 1999. Вегетативные реакции дельфинов на изменение постоянного магнитного поля. Биофизика. 44(3): 496–502.
  21. Артемова А.А., Романов Б.В., Григорьев П.Е. 2016. Влияние геомагнитной возмущенности на качество выполнения дельфинами поставленных задач. Таврический медико-биологический вестник. 19(4): 6‒12.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 2023