Assessment of carbon reserves in grey forest soils under different types of land use

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The research was conducted to study carbon reserves in soil layers under different types of land use. The object of the study was the gray residual carbonate forest soils of the Republic of Tatarstan. The work was carried out on sites with different types of land use: arable land (PL), land with the removal of phytomass (U), land without the removal of phytomass (UV) and fallow lands (W). The analysis was performed using the methods of spectrophotometry, real-time polymerase chain reaction (PCR-RV) and gas chromatography, which made it possible to determine the content of total organic carbon (TOC), soluble organic carbon (ROC), microbial biomass carbon (Smic) and the number of bacteria in soil horizons. Arable lands were characterized by experimentally minimal reserves of Sorghum in the meter layer – 189.67±10.44 t/ha , due to intensive tillage and mineralization of organic matter. Minor differences were noted in fallow lands and a sloping area with the removal of phytomass, where its reserves amounted to 255.03±21.35 and 287.14±28.01 t/ha , respectively. The maximum reserves were recorded at the site with mowing without removing phytomass – 322.49±19.4 t/ha , which indicates the high role of plant residues in the accumulation of organic compounds. Most of the carbon reserves are concentrated in the upper half of the meter: 52…78 % for Sorg, 40…59 % for ROE and 47…63 % for Smic. The content of ROE and Smic changes faster under the influence of external factors, in contrast to the more stable soil organic matter. According to their stocks, the studied samples were arranged in the following order: for RAW materials P < UV, for Smik – UV < P < W< U. The main part of the Smic is concentrated in the upper horizons, where the processes of decomposition of organic matter are active. Regular mowing with the remaining phytomass on the soil surface provides the greatest potential for accumulation of both total and soluble organic carbon.

About the authors

V. R. Babichuk

Kazan (Volga Region) Federal University

Email: polinazwerewa@yandex.ru
420000, Kazan’, ul. Kremlevskaya, 18, korp. 1

N. V. Danilova

Kazan (Volga Region) Federal University

420000, Kazan’, ul. Kremlevskaya, 18, korp. 1

A. S. Gordeev

Kazan (Volga Region) Federal University

420000, Kazan’, ul. Kremlevskaya, 18, korp. 1

P. A. Kuryntseva

Kazan (Volga Region) Federal University

420000, Kazan’, ul. Kremlevskaya, 18, korp. 1

S. Y. Selivanovskaya

Kazan (Volga Region) Federal University

420000, Kazan’, ul. Kremlevskaya, 18, korp. 1

References

  1. Исследование стабильности почвенного органического вещества методами дериватографии и длительной инкубации / Д. А. Соколов, И. И. Дмитревская, Н. Б. Паутова и др. // Почвоведение. 2021. № 4. С. 407–419.
  2. Batjes N. H. Total carbon and nitrogen in the soils of the world // European Journal of Soil Science. 1996. Vol. 47. No. 2. P. 151–163.
  3. Оценка запасов углерода в почвах лесных экосистем как основа мониторинга климатически активных веществ / Г. Н. Копцик, С. В. Копцик, Ю. В. Куприянова и др. // Почвоведение. 2023. № 12. С. 1686–1702.
  4. Chanlabut U., Nahok B. Soil Carbon Stock and Soil Properties under Different Land Use Types of Agriculture // Environment and Natural Resources Journal. 2023. Vol. 21. No. 5. P. 417–427.
  5. Benslimane Z., Faraoun F., Latreche A. Land use and impact on soil organic carbon stock in a semi-arid region of Algeria // Al-Qadisiyah Journal For Agriculture Sciences. 2023. Vol. 1. P. 4. URL: https://jouagr.qu.edu.iq/article_176958.html (дата обращения: 15.03.2025).
  6. Estimation of carbon stocks under different soil uses in the central highlands of Mexico / B. García-Fajardo, G. Álvarez-Arteaga, M. Orozco-Hernández, et al. // Acta Agronómica. 2017. Vol. 66. No. 1. P. 21–26.
  7. Lal R. Challenges and opportunities in soil organic matter research // European Journal of Soil Science. 2009. Vol. 60. No. 2. P. 158–169.
  8. Оценка запасов углерода в почве на территории карбонового полигона «Карбон–Поволжье» / Л. Александрова, А. С. Гордеев, В. Р. Бабичук и др. // Российский журнал прикладной экологии. 2023. № 4(36) . С. 12–21.
  9. Soil carbon-fixing bacterial communities respond to plant community change in coastal salt marsh wetlands / Q. Liao, C. Lu, F. Yuan, et al. // Applied Soil Ecology. 2023. Vol. 189. P. 104918. URL: https://www.sciencedirect.com/science/article/abs/pii/S0929139323001166?via%3Dihub (дата обращения: 14.03.2025).
  10. Effects of Soil Microorganisms on Carbon Sequestration under Different Mixed Modification Models in Pinus massoniana L. Plantation / M. Chen, C. Yuan, S. He, et al. // Forests. 2024. Vol. 15. No. 6. P. 1053. URL: https://www.mdpi.com/1999–4907/15/6/1053# (дата обращения: 15.03.2025).
  11. Unveiling the crucial role of soil microorganisms in carbon cycling: A review / H. Wu, H. Cui, C. Fu, et al. // Science of the Total Environment. 2024. Vol. 909. P. 168627. URL: https://www.sciencedirect.com/science/article/abs/pii/S0048969723072558?via%3Dihub (дата обращения: 21.03.2025).
  12. Сорокин Н. Д., Александров Д. Е. Микробиологическая трансформация углерода и азота в лесных почвах Средней Сибири // Вестник Красноярского государственного аграрного университета. 2013. № 9. С. 74–78.
  13. Reducing the uncertainty in estimating soil microbial-derived carbon storage / H. Hu, C. Qian, K. Xue, et al. // Proceedings of the National Academy of Sciences. 2024. Vol. 121. No. 35. P. e2401916121. URL: https://www.pnas.org/doi/10.1073/pnas.2401916121 (дата обращения: 25.03.2025).
  14. Estimation of carbon stocks and stabilization rates of organic matter in soils of the «Ladoga» carbon monitoring site / V. Polyakov, E. Abakumov, T. Nizamutdinov, et al. // Agronomy. 2023. Vol. 13. No. 3. P. 807. URL: https://www.mdpi.com/2073-4395/13/3/807 (дата обращения: 18.03.2025).
  15. ISO 14235:1998. Soil quality – Determination of organic carbon by sulfochromic oxidation. Geneva: International Organization for Standardization, 1998. 6 p.
  16. Министерство природных ресурсов и экологии Российской Федерации. Приказ от 27 мая 2022 г. № 371 «Об утверждении методик количественного определения объемов выбросов парниковых газов и поглощений парниковых газов» // Официальный интернет-портал правовой информации. URL: http://publication.pravo.gov.ru/Document/View/0001202206080019 (дата обращения: 10.03.2025).
  17. Land use change alters soil organic carbon: constrained global patterns and predictors / X. Huang, M. M. Ibrahim, Y. Luo, et al. // Earth’s Future. 2024. Vol. 12. No. 5. P. e2023EF004254. URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023EF004254 (дата обращения: 10.03.2025).
  18. Poeplau C., Don A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe // Geoderma. 2013. Vol. 192. P. 189–201.
  19. Changes in physical properties and carbon stocks of gray forest soils in the southern part of Moscow region during postagrogenic evolution / Y. I. Baeva, I. N. Kurganova, V. O. Lopes de Gerenyu, et al.// Eurasian Soil Science. 2017. Vol. 50. P. 327–334.
  20. Влияние процессов естественного лесовосстановления на микробиологическую активность постагрогенных почв Европейской части России / И. Н. Курганова, В. О. Лопес де Гереню, А. С. Мостовая и др. // Лесоведение. 2018. № 1. С. 3–23.
  21. Ren T., Cai A. Global patterns and drivers of soil dissolved organic carbon concentrations // Earth System Science Data Discussions. 2024. Vol. 2024. P. 1–25. URL: https://essd.copernicus.org/articles/17/2873/2025/ (дата обращения: 01.04.2025).
  22. Кузнецова А. И. Влияние растительности на запасы почвенного углерода в лесах (обзор) // Вопросы лесной науки. 2021. Т. 4. № 4. С. 41–95.
  23. Пулы и фракции органического углерода в почве: структура, функции и методы определения / В. М. Семенов, Т. Н. Лебедева, В. О. Лопес де Гереню и др. // Почвы и окружающая среда. 2023. Vol. 6. № 1. С. 4–19.
  24. Дегумусирование и почвенная секвестрация углерода / Б. М. Когут, В. М. Семенов, З. С. Артемьева и др. // Агрохимия. 2021. № 5. С. 3–13.
  25. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review // Soil Biology and Biochemistry. 2015. Vol. 83. P. 184–199.
  26. Распределение органического углерода между структурными и процессными пулами в серой лесной почве разного землепользования / Т. Н. Лебедева, Д. А. Соколов, М. В. Семенов и др. // Бюллетень Почвенного института имени В. В. Докучаева. 2024. № 118. С. 79–127.
  27. Unlocking the Potential of Microbial Biomass for Carbon and Nitrogen Transformations in Forest and Desert Soils: Review / G. Parmar, R. Chaudhari, A. Modi, et al. // Journal of Environmental Nanotechnology. 2024. Vol. 13. No. 4. P. 428–441.
  28. Labile carbon content and nutrient availability determines microbial composition in topsoil and subsoil following land-use change in subtropical China / H. Xiao, H. Sheng, L. Zhang, et al. // Land Degradation & Development. 2024. Vol. 35. No. 12. P. 3921–3933.
  29. Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth / A. Piotrowska-Długosz, J. Dlugosz, B. Kalisz, et al. // Agronomy. 2024. Vol. 14. No. 1. P. 83. URL: https://www.mdpi.com/2073-4395/14/1/83# (дата обращения: 04.04.2025).
  30. Microbial diversity of soils under different land use and chemical conditions / J. H. Yoon, M. Adhika ri, S. S. Jeong, et al. // Applied Biological Chemistry. 2024. Vol. 67. No. 1. P. 1–10. URL: https://applbiolchem.springeropen.com/articles/10.1186/s13765-024-00970-y (дата обращения: 05.04.2025).
  31. Ding J., Yu S. Stochastic Processes Dominate the Assembly of Soil Bacterial Communities of Land Use Patterns in Lesser Khingan Mountains, Northeast China // Life. 2024. Vol. 14. No. 11. P. 1407. URL: https://www.mdpi.com/2075-1729/14/11/1407 (дата обращения: 27.03.2025).
  32. Gerke J. The central role of soil organic matter in soil fertility and carbon storage // Soil Systems. 2022. Vol. 6. No. 2. P. 33. URL: https://www.mdpi.com/2571-8789/6/2/33 (дата обращения: 24.03.2025).
  33. Pathak P., Reddy A. S. Vertical distribution analysis of soil organic carbon and total nitrogen in different land use patterns of an agro-organic farm // Tropical Ecology. 2021. Vol. 62. P. 386–397.
  34. Soil erosion, mineral depletion and regeneration / I. O. Musa, A. Mustapha, J. O. Samuel, et al. // Prospects for Soil Regeneration and Its Impact on Environmental Protection. Cham: Springer Nature Switzerland, 2024. P. 159–172.
  35. The distribution of organic carbon, its forms and macroelements in agricultural soils / A. Slepetiene, Z. Kadziuliene, D. Feiziene, et al. // Zemdirbyste-Agriculture. 2020. Vol. 107. No 4. P. 291–300. URL: https://zemdirbyste-agriculture.lt/1074_str37/ (дата обращения: 30.03.2025).
  36. Национальный атлас почв Российской Федерации / Н. А. Аветов, А. Л. Александровский, И. О. Алябина и др. М.: Астрель, 2011. 632 с. ISBN 978-5-271-37461-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences