Changes in the expression profile of TRPM2 and RYR2 genes during the maturation of the chick thermoregulation system as a result of dosed low-temperature exposure during the sensitive period of early embryogenesis

Capa

Citar

Texto integral

Resumo

The studies were conducted to assess the involvement of candidate genes TRPM2 and RYR2, presumably associated with high adaptive abilities of chickens in early ontogenesis, in the processes of thermoregulation and thermal adaptation under hypothermic stress. The work was carried out on chickens of the Russian Snow-White gene pool breed (isolated for thermal resistance of chicks at low temperatures) and Amrox (selection for thermal resistance was not carried out). To «reprogram» the adaptive patterns of the regulatory characteristics of the temperature homeostasis system, dosed low-temperature exposure (+14…+16 °C, 6 h) was used during the sensitive period of early embryogenesis (day 5 of incubation). In day-old chicks, a change in the orientation of metabolic processes was evaluated, and in 14-day-old chicks, additionally, a change in the level of adaptive abilities after exposure to a low-temperature stress factor (+7 °C, 1 hour) in a comparative aspect (experimental groups vs control groups that were not cooled). The relative expression of the TRPM2 and RYR2 genes in tissue samples of embryos and chicks was determined by PCR. For 14-day-old chicks of the Russian Snow-White breed, the strength of the impact of the abiotic stress factor was probably insufficient to cause serious changes in the metabolic processes of the body. A single dosed cooling of Amrox embryos led to changes in the body reaction rate of the chicks of the experimental group, which survived until the age of 14 days. Chicks of this group are better adapted to cold stress, lipids and proteins are mainly used as an energy substrate and the mechanisms of non-shivering thermogenesis in muscles are used to maintain body temperature. This is confirmed by differences in the expression patterns of the RYR2 and TRPM2 genes, the level of relative expression of which in the pectoral muscle of chicks of the experimental groups is higher than in the control (in Amrox chicks by 2.5 times). Dosed single low-temperature exposure during the sensitive period of early embryogenesis can help to increase the adaptive abilities of the body of chicks up to 14 days of age in conditions of hypothermic stress.

Sobre autores

E. Fedorova

Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Research Center for Animal Husbandry

Autor responsável pela correspondência
Email: pozovnikova@gmail.com

кандидат биологических наук

Rússia, 196601, Sankt-Peterburg, Pushkin, Moskovskoe sh., 55а

E. Chugunova

Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Research Center for Animal Husbandry

Email: pozovnikova@gmail.com
Rússia, 196601, Sankt-Peterburg, Pushkin, Moskovskoe sh., 55а

M. Pozovnikova

Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Research Center for Animal Husbandry

Email: pozovnikova@gmail.com

кандидат биологических наук

Rússia, 196601, Sankt-Peterburg, Pushkin, Moskovskoe sh., 55а

Bibliografia

  1. Brooding temperatures for chicks acclimated to heat during incubation: effects on post-hatch intestinal development and body weight under heat stress / M. Aksit, S. Yalcin, C. Yenisey, et al. // British Poultry Science. 2010. Vol. 51. No. 3. Р. 444–452. doi: 10.1080/00071668.2010.495746.
  2. Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review / T. Loyau, L. Bedrani, C. Berri, et al. // Animal. 2015. Vol. 9. No. 1. P. 76–85. doi: 10.1017/S1751731114001931.
  3. Morita V. S., Almeida V. R., Matos Junior J. B., Vicentini T. I., van den Brand H., Boleli I. C. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase // Poultry Science. 2016; 1; 95 (8): 1795–1804. doi: 10.3382/ps/pew071.
  4. Hatching phase influences thermal preference of broilers throughout rearing / Júnior J. B. Matos, T. I. Vicentini, A. R. Almeida, et al. // PLoS One. 2020. Vol.15. No. 7. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235600 (дата обращения 05.06.2024). doi: 10.1371/journal.pone.0235600.
  5. Al-Zghoul M. B., Mohammad K. M. M. Saleh Effects of thermal manipulation of eggs on the response of jejunal mucosae to posthatch chronic heat stress in broiler chickens // Poultry Science. 2020. Vol. 99. No. 5. P. 2727–2735. doi: 10.1016/j.psj.2019.12.038.
  6. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens / T. Loyau, A. Collin, C. Yenisey, et al. // Poultry Science. 2014. Vol. 93. No. 8. P. 2078–86. doi: 10.3382/ps.2014-03881.
  7. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens / D. Nyuiadzi, A. Travel, B. Méda, et al. // Poultry Science. 2017. Vol. 96. No. 12. P. 4261–4269. doi: 10.3382/ps/pex264.
  8. Short cold exposures during incubation and postnatal cold temperature affect performance, breast meat quality, and welfare parameters in broiler chickens / D. Nyuiadzi, C. Berri, L. Dusart, et al. // Poultry Science. 2020. Vol. 99. No. 2. P. 857–868. doi: 10.1016/j.psj.2019.10.024.
  9. Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens / N. Y. Xu, W. Si, M. Li, et al. // Zoological Research. 2021. Vol. 42. No. 6. P. 710–720. doi: 10.24272/j.issn.2095-8137.2021.189.
  10. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds / S. Xie, X. Yang, D. Wang, et al. // PLoS One. 2018. Vol. 13. No. 1. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191096 (дата обращения 05.06.2024). doi: 10.1371/journal.pone.0191096.
  11. Performance differences of Rhode Island Red, Bashang Long-tail Chicken, and their reciprocal crossbreds under natural cold stress / S. Xie, X. Yang, Y. Gao, et al. // Asian-Australasian journal of animal sciences. 2017. Vol. 30. No. 10. P. 1507–1514. doi: 10.5713/ajas.16.0957.
  12. Identification of Key Candidate Genes in Runs of Homozygosity of the Genome of Two Chicken Breeds, Associated with Cold Adaptation / E. S. Fedorova, N. V. Dementieva, Y. S. Shcherbakov, et al. // Biology (Basel). 2022. Vol. 11. No. 4. URL: https://www.mdpi.com/2079–7737/11/4/547 (дата обращения 05.06.2024). doi: 10.3390/biology11040547.
  13. Influence of temperature during incubation on the mRNA levels of temperature sensitive ion channels in the brain of broiler chicken embryos / S. M. D. Verlinden, T. Norton, M. L. V. Larsen, et al. // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2022. Vol. 268. URL: https://www.sciencedirect.com/science/article/abs/pii/S1095643322000575?via%3Dihub (дата обращения 05.06.2024). doi: 10.1016/j.cbpa.2022.111199.
  14. Evtushenko A. A., Voronova I. P., Kozyreva T. V. Effect of Long-Term Adaptation to Cold and Short-Term Cooling on the Expression of the TRPM2 Ion Channel Gene in the Hypothalamus of Rats // Current Issues in Molecular Biology. 2023. Vol. 45. No. 2. P. 1002–1011. doi: 10.3390/cimb45020065.
  15. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia / R. Kraft, C. Grimm, K. Grosse, et al. // American Journal of Physiology-Cell Physiology. 2004. Vol. 286. No. 1. P. 129–137. doi: 10.1152/ajpcell.00331.2003.
  16. Seasonal cold induces divergent structural/biochemical adaptations in different skeletal muscles of Columba livia: evidence for nonshivering thermogenesis in adult birds / P.Pani, G. Swalsingh, S. Pani, et al. // Biochemical Journal. 2023. Vol. 480. No. 17. P. 1397–1409. doi: 10.1042/BCJ20230245
  17. Muscle non-shivering thermogenesis and its role in the evolution of endothermy / J. Nowack, S. Giroud, W. Arnold, et al. // Frontiers in physiology. 2017. Vol. 8. URL: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.00889/full (дата обращения 05.06.2024). doi: 10.3389/fphys.2017.00889.
  18. Walsberg G., Wolf B. Variation in the respiratory quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production //Journal of Experimental Biology. 1995. Vol. 198. No. 1. P. 213–219. doi: 10.1242/jeb.198.1.213.
  19. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (–Delta Delta C(T)) Method // Methods. 2001. Vol. 25. P. 402–408. doi: 10.1006/meth.2001.1262.
  20. Ruuskanen S., Hsu B. Y., Nord A. Endocrinology of thermoregulation in birds in a changing climate // Molecular and Cellular Endocrinology. 2021. Vol. 519. URL: https://www.sciencedirect.com/science/article/pii/S0303720720303907?via%3Dihub (дата обращения 05.06.2024). doi: 10.1016/j.mce.2020.111088.
  21. Станишевская О. И., Федорова Е. С. Сравнительная оценка стресс-реактивности организма кур пород русская белая с мутацией sw+ и амрокс на гипотермию в эмбриональном и раннем постнатальном периодах онтогенеза // Сельскохозяйственная биология. 2019. Vol. 54. No. 6. P. 1135–1143. doi: 10.15389/agrobiology.2019.6.1135rus.
  22. Supply and demand of creatine and glycogen in broiler chicken embryos / J. Dayan, T. Melkman-Zehavi, N. Reicher, et al. // Frontiers in Physiology. 2023. Vol. 14. URL: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1079638/full (дата обращения 05.06.2024). doi: 10.3389/fphys.2023.1079638.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024