Water relation features of prunus laurocerasus l. under progressive soil drought stress of soutern coast of the Crimea

Cover Page

Cite item

Full Text

Abstract

Study the Ecophysiological reaction Prunus laurocerasus L. effect of progressive soil drought determined optimum thresholds and zones of soil moisture, temperature and light, photosynthesis and transpiration limiting Prunus laurocerasus L. in summer active vegetation on southern coast. Start of development of the plant water stress and inhibition of photosynthesis - the soil moisture reduction to 30% of FC.; Temperature optimum photosynthesis whose exceeding leads to inhibition of the enzyme activity and reduce the rate of photosynthesis - metal temperature 35 °C; Growth inhibition, reduction turgor apical young leaves - soil moisture content decrease to 25-20% FC. and Reduced soil moisture to 18% FC and below results in a sharp decrease transpiration rate - 92.3%, visible photosynthesis rate at 95.1% and stomatal conductance by 94.7%. The proportion of the total dark respiration grossphotosynthetic under strong water stress - 78%, in the absence of stress factors - 25-30%; The beginning of the recovery after watering turgor - 1.5-2 hours, the full restoration of the intensity of photosynthetic gas exchange after watering - after 24 hours. Under strong water stress visually noticeable loss of chlorophyll in leaf: Central vein acquired a yellow-green color to leaf- brownish stains. The culture conditions, this leads to loss of decorative qualities of plants. Disclosure mechanisms of functioning of leaves, depending on the environmental impact, provides the basis for the environmental assessment of the physiology of the evergreen species and the possibility of agricultural technology of choice.

About the authors

O. A. Ilnitsky

Botanical Gardens – National Scientific Center RAS

Email: pashteckiy@gmail.com

доктор биологических наук

Russian Federation, 52, Nikitsky spusk, vil. Nikita, Yalta 298648, Republik of the Crimea

A. V. Pashtetsky

Botanical Gardens – National Scientific Center RAS

Author for correspondence.
Email: pashteckiy@gmail.com

candidate of economic sciences

Russian Federation, 52, Nikitsky spusk, vil. Nikita, Yalta 298648, Republik of the Crimea

Yu. V. Plugatar

Botanical Gardens – National Scientific Center RAS

Email: pashteckiy@gmail.com

corresponding member of RAS

Russian Federation, 52, Nikitsky spusk, vil. Nikita, Yalta 298648, Republik of the Crimea

S. P. Korsakova

Botanical Gardens – National Scientific Center RAS

Email: pashteckiy@gmail.com
Russian Federation, 52, Nikitsky spusk, vil. Nikita, Yalta 298648, Republik of the Crimea

References

  1. Безверхний В.А. Проявление характерных периодов колебаний орбитальных параметров Земли в палеоклиматических данных // Докл. РАН. 2013. Т. 451. С. 327–331.
  2. Безверхний В.А.. Развитие метода вейвлет-преобразования для анализа геофизических данных // Изв. РАН. Физика атмосферы и океана. 2001. т. 37. № 5. С. 630–638.
  3. Добрецов Н.Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика. 2010. Т. 51. С. 761–784.
  4. Постников Е.Б. Вейвлет-преобразование с вейвлетом Морле: методы расчета, основанные на решении диффузионных дифференциальных уравнений // Комп. исслед. модел. 2009. Т. 1 № 1 С. 5–12.
  5. Хаин В.Е., Халилов Э.Н. Цикличность геодинамических процессов. М: Научный мир. 2009. 519 c.
  6. Barkin Yu.V. Dynamics of the Earth shells and variations of paleoclimate. Proc. Milutin MilankovitchAnniv. Symp. «Paleoclimate and the Earth climate system». 2004. Belgrade. Serbia. 30 Aug.– Sep. 2004.
  7. Barkin Yu.V. and Shatina A.V. Deformation of the Earth’s mantle due to core displacements // Astron. Astrophys. Trans. 2005. V. 24. P. 195–213.
  8. Berger A. and Loutre M.F. Insolation values for the climate of the last 10 million years // Quat. Sci. Rev. 1991. V. 10. P. 297–317.
  9. Berger W.H. Milankovitch theory – hits and misses. Scripps Institution of Oceanography Technical Report. Scripps Inst. Oceanogr. UC. San Diego. Ca. 2012. 36 р.
  10. Bezverkhnii V.A. Earth’s Obliquity Oscillations can Influence Climate Change by Driving Global Volcanic Activity // Geosciences Res. 2017. V. 2. № 1. P. 22–26.
  11. Cappellini, V., Constantinides A.G.D. and Emiliani P. Digital filters and their applications // Acad. Press. London. 1978. 393 p.
  12. Crowley J.W., Katz R.F., Huybers P., Langmuir C.H., Park S.H. Glacial cycles drive variations in the production of oceanic crust // Science. 2015. V. 347. P. 1237–1240.
  13. Davies J.H.. Global map of solid Earth surface heat flow. Geochemistry, Geophysics, Geosystems // 2013. V. 14. P. 4608–4622.
  14. EPICA community members. Eight Glacial Cycles from an Antarctic Ice Core // Nature. 2004. V. 429. P. 623–628.
  15. Goff J.A. Comment on Glacial cycles drive variations in the production of oceanic crust // Science. 2015. V. 349. P. 1065.
  16. Hansen J, Sato M, Russell G, Kharecha P. Climate sensitivity, sea level and atmospheric carbon dioxide // 2013. Phil. Trans.R. Soc A 371: 20120294. 31 p.
  17. Huybers P. and Langmuir Ch.H. Delayed CO2 emissions from mid-ocean ridge volcanism as a possible cause of late-Pleistocene glacial cycles // Earth Planet. Sci. Let. 2017. V. 457. P. 238–249.
  18. Kutterolf S., Jegen M., Mitrovica J.X., Kwasnitschka T., Freundt A. and P.J. Huybers. A detection of Milankovitch frequencies in global volcanic activity // Geology. 2013.V. 41. № 2. P. 227–230.
  19. Lisiecki L.E. and Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18 O records // Paleoceanogr. 2005. V. 20. PA1003. P. 1–17.
  20. Maslin M.A., Brierley C.M. The role of orbital forcing in the Early Middle Pleistocene Transition // Quat. Intern. 2015. V. 389. P. 1–9.
  21. Morlet J., Arensz G., Fourgeau E., Giard D. Wave propagation and sampling theory-Part II: Sampling theory and complex waves // GEOPHYSICS. V. 41. № 2. 1982. P. 222–236.
  22. Olive J.A., Behn M.D., Ito G., Buck W.R., Escartín J., Howell S. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply // Science. 2015. V. 350. P. 310–313.
  23. Petit J.R., Basile I., Leruyuet A., Raynaud D., Lorius C., Jouzel J., Stievenard M., Lipenkov V.Y., Barkov N.I., Kudryashov B.B., Davis M., Saltzman E. and Kotlyakov V. Four climate cycles in Vostok ice core // Nature. 1997. V. 387. P. 359–360.
  24. Tolstoy M. Mid-ocean ridge eruptions as a climate valve // Geophys. Res. Lett. 2015. V. 42. №. 5. P. 1346–1351.
  25. Torrence, C. and Compo, G.P. A Practical Guide to Wavelet Analysis // Bull. Amer. Meteorol. Soc. 1998. V. 79. P. 61–78.
  26. Wang Z.J. and Lin X. Astronomy and Climate-Earth System: Can Magma Motion under Sun-Moon Gravitation Contribute to Paleoclimatic Variations and Earth’s Heat? // Advan. Astron. 2015. V. 2015. Art. ID 536829. P. 1–10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies