Association of daily dynamics of myocardial infarction with distribution of spikes in TiNi-detector readings

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A comparison of the incidence of myocardial infarction during the day was made with the daily distribution of spikes in TiNi-detector readings. Based on long-term monitoring data, it has been shown that the maximum number of bursts on the TiNi detector graphs is observed between 07:00 and 10:00 local time. It is known that a similar daily pattern occurs in the case of cardiovascular complications. Based on the analysis of synchronism effects previously discovered using the TiNi detector, the properties of the factor acting on the detector, capable of influencing both the behavior of the TiNi system and the state of living organisms, have been determined. This approach allows us to obtain new data on the mechanisms of the impact of external factors on the state of the biosphere.

作者简介

G. Dambaev

Siberian State Medical University

Tomsk, Russian Federation

V. Erofeev

Institute for Monitoring of Climate and Ecological Systems SB RAS

Tomsk, Russian Federation

A. Garganeeva

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russian Federation

E. Kuzheleva

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-томск.ru
Tomsk, Russian Federation

S. Okrugin

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russian Federation

参考

  1. Расулова В. В. Влияние климатических условий на возникновение острого инфаркта миокарда // Тверской медицинский журнал. 2023:1:1135–1161.
  2. Kuzmenko N. V., Tsyrlin V. A., Pliss M. G., Galagudza M. M. // Egypt Heart J. 2022:74(1):84.
  3. Bruno R. M., Taddei S. // European Heart Journal. 2015; 36:1152–1154.
  4. Русак С. Н., Еськов В. В., Молягов Д. И. и др. // Экология человека. 2013; 11:1–6.
  5. Козловская И. Л., Булкина О. С., Лопухова В. В. и др. // Тер. Архив. 2015; 9:84–90.
  6. Ерофеев В. Я., Кабанов М. В., Выборнов П. В., Комаров А. И. // ДАН. 2015. Т. 465. № 6. С. 727–731.
  7. Ерофеев В. Я., Кабанов М. В. // ДАН. 2019. Т. 484. № 6. С. 682–685.
  8. Gurevich A. V., Karashtin A. N. // Phys. Rev. Lett. 2013. V. 110. 185005.
  9. Erofeev V.Ya. // IOP Conf. Ser.: Earth and Environmental Science. 2021. 840:012022.
  10. Sidorenkov N. S. // Astronomical and Astrophysical Transactions. 2018. V. 30, N 2. P. 249–260.
  11. Erofeev V.Ya., Kabanov M. V. // IOP Conf. Ser.: Materials Science and Engineering. 2019:698(4):0044045.
  12. Владимирский Б. М. Космическая погода и биосфера – история исследований и современность. М.: URSS, 2016. 172 с.
  13. Panza J. A., Epstein S. E., Quyyumi A. A. // New England Journal of Medicine 325 (1991). Р. 986–990.
  14. Гарганеева А. А., Округин С. А., Борель К. Н. // Сибирский медицинский журнал (г. Томск). 2015. Т. 30. № 2. С. 125–130.
  15. Eisenberg M. S., Bergner L., Hallstrom A. P., Cummins R. O. // Scientific American 254 (May 1986). Р. 37–&.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025