Near-surface temperature and climate 1750–600 ma ago by the example of clay rocks of the riphean stratotype (Southern Urals)
- Авторлар: Maslov A.V.1, Melnichik O.Y.2
-
Мекемелер:
- Geological Institute of the Russian Academy of Sciences
- Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences
- Шығарылым: Том 522, № 2 (2025)
- Беттер: 319-327
- Бөлім: CLIMATIC PROCESSES
- ##submission.dateSubmitted##: 15.10.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://journals.eco-vector.com/2686-7397/article/view/693308
- DOI: https://doi.org/10.31857/S2686739725060189
- ID: 693308
Дәйексөз келтіру
Аннотация
The paper presents the results of calculating the near-surface mean annual temperatures (MAT) and the mean annual precipitation (“simple” and “more rational” variants) for source areas using the major oxide composition of clay rocks of the Riphean stratotype (western slope of the South Urals, Bashkirian meganticlinorium). It was found that during most of the time interval 1750–600 Ma, the climate was comparable to, according to the classification [1], temperate (9 ≤ MAT < 23°C) and, less often, tropical (MAT > 23°C) or dry cold (MAT < 18°C). Considerations are put forward about the relationship of the Riphean paleoclimate both with the sublatitudinal drift of crustal blocks and with various subglobal and local events. For example, at the beginning of the Middle Riphean, a decrease in the average MAT from more than 22°C (Mashak time) to ~13°C (Zigaza-Komarovo time) is observed. The reasons for this could be sequentially: 1) an increase in the concentration of CO2; and other volcanic gases in the atmosphere during the activity of the Mashak large igneous province; 2) a decrease in the CO2 content as a result of intensive weathering of the basic igneous rocks of the same province. At the end of the Riphean, the MATaverage values could have been influenced by the Baltica drift to middle (30°–60° S) latitudes, reconstructed from paleomagnetic data.
Негізгі сөздер
Авторлар туралы
A. Maslov
Geological Institute of the Russian Academy of Sciences
Email: amas2004@mail.ru
Moscow, Russia
O. Melnichik
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences
Email: melnichuk@igg.uran.ru
Yekaterinburg, Russia
Әдебиет тізімі
- Zhang L., Wang C., Li X., Cao K., Song Y., Hu B., Lu D., Wang Q., Du X., Cao S. A new paleoclimate classification for deep time // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016. V. 443. P. 98–106.
- Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites // Nature. 1982. V. 299. P. 715–717.
- Deng K., Yang S., Guo Y. A global temperature control of silicate weathering intensity // Nat. Commun. 2022. V. 13. 1781.
- Perri F. Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: an overview // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020. V. 556. 109873.
- Sheldon N.D., Retallack G.J., Tanaka S. Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene-Oligocene Boundary in Oregon // J. Geol. 2002. V. 110. P. 687–696.
- Köppen W. Die Klimate der Erde: Grundriss der Klimakunde. Berlin: Walter de Gruyter & Company, 1923. 369 p.
- Мельничук О.Ю., Маслов А.В. Химический состав глинистых пород стратотипа рифея и некоторые количественные характеристики палеоклимата // Литосфера. 2025. Т. 25. № 4. (В печати).
- Babechuk M.G., Widdowson M., Kamber B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India // Chem. Geol. 2014. V. 363. P. 56–75.
- Fedo C.M., Nesbitt W.H., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance // Geology. 1995. V. 23. P. 921–924.
- Meunier A., Caner L., Hubert F., El Albani A., Pret D. The weathering intensity scale (WIS): An alternative approach of the Chemical Index of Alteration (CIA) // Am. J. Sci. 2013. V. 313. P. 113–143.
- Маслов А.В., Кузнецов А.Б., Крамчанинов А.Ю., Шпакович Л.В., Гареев Э.З., Подковыров В.Н., Ковалев С.Г. Источники сноса верхнедокембрийских глинистых пород Южного Урала: результаты геохимических и Sm–Nd изотопно-геохимических исследований // Стратиграфия. Геол. корреляция. 2022. Т. 30. № 1. С. 33–54.
- Горожанин В.М., Мичурин С.В., Войкина З.А., Шарипова А.А., Биктимерова З.Р., Султанова А.Г. Марино-гляциальные отложения в Толпаровском разрезе верхнего докембрия (реки Зилим и Малый Толпар) // Геологический вестник. 2019. № 3. С. 69–92.
- Ernst R.E., Bond D.P. G., Zhang S.-H., Buchan K.L., Grasby S.E., Youbi N., El Bilal H., Bekker A., Doucet L. Large Igneous Province record through time and implications for secular environmental changes and geological time-scale boundaries // Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes. Eds. R.E. Ernst, A.J. Dickson, A. Bekker. AGU Geophysical Monograph. 2021. P. 3–26.
- Маслов А.В., Подковыров В.Н., Гареев Э.З., Граунов О.В. Изменения палеоклимата в позднем докембрии (по данным изучения верхнедокембрийского разреза Южного Урала) // Литология и полез. ископаемые. 2016. № 2. С. 129–149.
- Анфимов Л.В. Литогенез в рифейских осадочных толщах Башкирского мегантиклинория (Ю. Урал). Екатеринбург: УрО РАН, 1997. 288 с.
- Маслов А.В., Гареев Э.З., Крупенин М.Т., Демчук И.Г. Тонкая алюмосиликокластика в верхнедокембрийском разрезе Башкирского мегантиклинория (к реконструкции условий формирования). Екатеринбург: ИГГ УрО РАН, 1999. 324 с.
- Юдович Я.Э., Кетрис М.П., Рыбина Н.В. Геохимия титана. Сыктывкар: ИГ Коми НЦ УрО РАН, 2018. 432 с.
- Li Z.-X., Liu Y., Ernst R. A dynamic 2000–540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle // Earth-Sci. Rev. 2023. V. 238. 104336.
- Ernst R.E., Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017. V. 478. P. 30–52.
- Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). Сыктывкар: Геопринт, 2011. 742 с.
Қосымша файлдар
