Effect of methane-hydrogen fluid on diamond crystallization in metal-carbon melt at p-t conditions of lithospheric mantle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the unresolved questions of diamond genesis under reducing conditions in the Earth’s mantle is the role of the methane-hydrogen fluid. This paper presents the results of experimental studies on the influence of anthracene (C14H10) additives on the crystallization, properties and characteristics of diamond in metal-carbon melts under P-T parameters of the lithospheric mantle. It was found that an increase in anthracene content in the Ni7Fe3–C system from 0 to 2.69 wt. % at a pressure of 5.5 GPa and a temperature of 1400°C leads to a decrease in the degree of transformation of graphite into diamond from 100% to zero, which indicates the inhibitory role of the added impurity. Metal, graphite, methane and hydrogen were identified as the main phases of inclusions in the synthesized diamonds. It is substantiated that the fluid composition in the studied system is methane-hydrogen, and it is considered to be the main inhibiting impurity. It is established that with increasing anthracene content in the system, diamond growth on seeds is replaced by spontaneous crystallization, then metastable graphite and diamonds with anti-skeletal growth features are formed, and then only metastable graphite crystallizes.

About the authors

Yu. N. Palyanov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences

Email: palyanov@igm.nsc.ru
Novosibirsk, Russia

Yu. M. Borzdov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences

Novosibirsk, Russia

I. N. Kupriyanov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences

Novosibirsk, Russia

D. V. Nechaev

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Shirey S.B., Cartigny P., Frost D.J., Keshav S., Nestola F., Nimis P., Pearson G.D., Sobolev N.V., Walte M.J. Diamonds and the geology of mantle carbon // Reviews in Mineralogy and Geochemistry. 2013. V. 75. P. 355–421.
  2. Luth R.W., Palyanov Y.N., Bureau H. Experimental Petrology Applied to Natural Diamond Growth // Reviews in Mineralogy and Geochemistry. 2022. V. 88 (1). P. 755–808.
  3. Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H., Wang W. Large gem diamonds from metallic liquid in Earth’s deep mantle // Science. 2016. V. 354. 1403.
  4. Smith E.M., Kopylova M.G. Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle // Canadian Journal of Earth Science. 2014. V. 51. P. 510–516.
  5. Shatsky V.S., Ragozin A.L., Logvinova A.M., Wirth R., Kalinina V.V., Sobolev N.V. Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian Craton // Lithos. 2020. V. 364. 105514.
  6. Palyanov Y., Kupriyanov I., Khokhryakov A., Ralchenko V. Crystal growth of diamond / In: P. Rudolph (Ed.), Handbook of Crystal Growth. 2nd edition, 2a. Elsevier, 2015. P. 671–713.
  7. Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Trønnes R.G., Rubie D.C. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle // Nature. 2004. V. 428. P. 409–412.
  8. Rohrbach A., Ballhaus C., Golla-Schindler U., Ulmer P., Kamenetsky V.S., Kuzmin D.V. Metal saturation in the upper mantle // Nature. 2007. V. 449. P. 456–458.
  9. Frost D.J., McCammon C.A. The redox state of Earth’s mantle // Annual Review of Earth and Planetary Sciences. 2008. V. 36. P. 389–420.
  10. Rohrbach A., Schmidt M.W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling // Nature. 2011. V. 472 (7342). P. 209–212
  11. Kaminsky F.V., Wirth R. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil // The Canadian Mineralogist. 2011. V. 49. P. 555–572.
  12. Woodland A.B., Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa // Earth and Planetary Science Letters. 2003. V. 214. P. 295–310.
  13. Sokol A.G., Palyanova G.A., Palyanov Yu.N., Tomilenko A.A., Melenevsky V.N. Fluid regime and diamond formation in the reduced mantle: experimental constraints // Geochimica et Cosmochimica Acta. 2009. V. 73. Iss. 19. P. 5820–5834.
  14. Sokol A.G., Palyanov Y.N., Tomilenko A.A., Bul’bak T.A., Palyanova G.A. Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa // Earth and Planetary Science Letters. 2017. V. 460. P. 234–243.
  15. Томиленко А.А., Рагозин А.Л., Шацкий В.С., Шебанин А.П. Вариации состава флюидной фазы в процессе кристаллизации природных алмазов // ДАН. 2001. Т. 378. № 6. С. 802–805.
  16. Пальянов Ю.Н., Хохряков А.Ф., Борздов Ю.М., Дорошев А.М., Томиленко А.А., Соболев Н.В. Включения в синтетическом алмазе // ДАН. 1994. Т. 338. № 1. C. 78–80.
  17. Tomilenko A.A., Chepurov A.I., Pal’yanov Yu.N., Shebanin A.P., Sobolev N.V. Hydrocarbon Inclusions in Synthetic Diamonds // Eur. J. Mineral. 1998. № 10. P. 1135‒1141.
  18. Smith E.M., Wang W. Fluid CH4 and H2 trapped around metallic inclusions in HPHT synthetic diamond // Diamond and Related Materials. 2016. V. 68. P. 10–12.
  19. Sonin V.M., Zhimulev E.I., Chepurov A.I., Goryainov S.V., Gromilov S.A., Gryaznov I.A., Chepurov A.A., Tomilenko A.A. Synthesis of diamond from polycyclic aromatic hydrocarbons (anthracene) in the presence of an Fe, Ni-melt at 5.5 GPa and 1450°C // CrystEngComm. 2024. V. 26. P. 1583–1589.
  20. Palyanov Yu.N., Khokhryakov A.F., Borzdov Yu.M., Kupriyanov I.N. Diamond growth and morphology under the influence of impurity adsorption // Cryst. Growth Des. 2013. V. 13. Iss. 12. P. 5411–5419.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences