Traces of pelagic biota in siliceous rocks of the Upper Cambrian of Southern Kazakhstan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The lower part of the Burubaytal Formation that encompass the Upper Cambrian and Lower Ordovician cherts in the in the Southwestern Balkhash region of Southern Kazakhstan is enriched by organic detritus. This detritus consists of numerous fecal pellets composed of para- and protoconodont elements, as well as spherical acritarchs, individual acritarchs, and conodont elements. Additionally, there are scattered carbonaceous, finely dispersed organic matter and clumps of this matter. These findings indicate a significant contribution of pelagic organisms in the formation of a vertical flow of organic matter from the pelagic zone to the deep-sea bottom and an episode of increased burial of organic matter at the beginning of the Batyrbaian Stage in the Late Cambrian corresponding to the TOCE (Top of Cambrian Excursion) isotopic event.

作者简介

T. Tolmacheva

A.P. Karpinsky All-Russian Scientific Research Geological Institute

Email: Tatiana_Tolmacheva@karpinskyinstitute.ru
Saint Petersburg, Russia

A. Tretyakov

Geological Institute of the Russian Academy of Sciences

Moscow, Russia

A. Ryazantsev

Geological Institute of the Russian Academy of Sciences

Moscow, Russia

参考

  1. Turner J.T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms // Aquatic Microbial Ecology. 2002. V. 27. C. 57–102.
  2. Riser C.W., Wassmann P., Olli K., Pasternak A., Arashkevich E. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea // Journal of Marine Systems. 2002. 38. P. 175–188.
  3. Whalen Ch. D., Briggs D.E.G. The Palaeozoic colonization of the water column and the rise of global nekton // Proceeding of the Royal Society. Biol. Sci. 2018. V. 285. 20180883
  4. Habib D., Miller J.A. Dinoflagellate species and organic facies evidence of marine transgression and regression in the Atlantic coastal plain // Palaeogeography, Palaeoclimatology, Palaeoecology. 1989. V. 74. P. 23–47.
  5. Porter K.G., Robbins E.I. Zooplankton fecal pellets link fossil fuel and phosphate deposits // Science. 1981. V. 212. No. 4497.
  6. Maeda H., Tanaka G., Shimobayashi N., Ohno T., Matsuoka H. Cambrian Orsten Lagerstätte from the Alum Shale Formations: fecal pellets as probable source of phosphorus preservation // Palaios. 2011. V. 26. P. 225–231.
  7. Grasby S.E., Ardakani O., Liu X., Bond D., Wignall P., Strachan L. Marine snowstorm during the Permian–Triassic mass extinction // Geology. 2024. V. 52. P. 120–124.
  8. Susumu H., Roman M.R. Marine copepod fecal pellets: Production, preservation and sedimentation // Journal of Marine Research. 1978. V. 36 (1). P. 45–57.
  9. Tolmacheva T., Popov L., Gogin I., Holmer L. Conodont biostratigraphy and faunal assemblages in radiolarian ribbon-banded cherts of the Burubaital Formation, West Balkhash Region, Kazakhstan // Geol. Mag. 2004. V. 141. No. 6. P. 699–715.
  10. Толмачева Т.Ю. Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса. СПб.: Изд-во ВСЕГЕИ, 2014. 315 с.
  11. Tolmacheva T. Yu., Degtyarev K.E., Ryazantsev A.V. Ordovician conodont biostratigraphy, diversity and biogeography in deep-water radiolarian cherts from Kazakhstan // Palaeogeography, Palaeoclimatology, Palaeoecology. 2021. V. 578. P. 110572.
  12. Tolmacheva T. Yu., Danelian T., Popov L.Е. Evidence for 15 m. y. of continuous deep-sea biogenic siliceous sedimentation in early Paleozoic oceans // Geology. 2001. V. 29. № 8. Р. 755–758.
  13. Толмачева Т.Ю., Рязанцев А.В., Дегтярев К.Е., Никитина О.И. Отложения гидротермальных баритовых источников позднего кембрия – раннего ордовика в кремнистых толщах Южного Казахстана // ДАН. 2014. Т. 458. № 3. С. 318–322.
  14. Lee B.S. Middle Cambrian (Upper Series 3) protoconodonts and paraconodonts from the Machari Formation at Eodungol Section, Yeongwol, Korea // Journal of Earth Science. 2013. V. 24. P. 157–169.
  15. Iversen M.H., Poulsen L.K. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis // Marine Ecology Progress Series. 2007. V. 350. P. 79–89.
  16. Wallet E., Slater B.J., Willman S. The palaeobiological significance of clustering in acritarchs: a case study from the early Cambrian of North Greenland // Palaeontology. 2024. V. 67. Part 5. № 4. P. 1–20.
  17. Collette J., Hagadorn J. Early evolution of Phyllocarid arthropods: phylogeny and systematics of Cambrian-Devonian archaeostracans // Journal of Paleontology. 2010. № 84. C. 795–820.
  18. Yoon W.D.., Kim S.K., Han K.N. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic // Marine Biology. 2001. V. 139. P. 923–928.
  19. Cramer B.D., Jarvis I. Carbon isotope stratigraphy / In: Geologic Time Scale. Eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg. 2020. Elsevier BV, 2020. pp. 309–343.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025