Molecular diagnostics of the Krabbe disease in Russian children

Cover Page

Abstract


Introduction. Krabbe disease (KD) is the lysosomal storage disease developed due to the decline of the galactocerebrosidase activity associated with mutations in the GALC gene. It leads to the development of oligodendrocytes and lemmocytes (Schwann cells) myelin-forming dysfunction. Nowadays the only possible treatment of KD is hemopoietic cell transplantation which should be performed before the manifestation of any signs of disease. That is why laboratory diagnostics has special significance.

The aim of the study. To elaborate the algorithm of a molecular diagnostics of the Krabbe disease (KD) in Russian children.

Material and methods. 190 patients were diagnosed for the exclusion of KD during the period from 2012 to 2019. In all cases, there was measured a galactocerebrosidase activity in dry blood spots. In cases with the declined enzyme activity, there was performed a further search of pathogenic variants in the GALC gene. The concentration of glycosyl sphingosine (Lyso-GL1) biomarker was measured in 90 patients included in the study since 2016.

Results. The enzyme activity was decreased in all patients in comparison with the control group (0.33±0.05; 2.95±0.24 µmol/l/h, (p<0.001; CI: 95%) in 9 patients. Also, we revealed an increased concentration of Lyso-GL1 biomarker in matched controls (12.50±1.57 ng/ml; 1.8±0.33 ng/ml, (p<0.005; CI: 95%) in 5 patients. During molecular genetic testing of KD, three novel pathogenic variants of the GALC gene were revealed in 3 out of 9 patients: c.265-2A>G, c.1036del and c.2037_2040del.

Conclusion. The Lyso-GL1 concentration measurement can be used as an additional diagnostics method of KD. The high efficiency of the presented algorithm for the KD diagnostics in Russian children is presented.


Full Text

Restricted Access

About the authors

Alexander A. Pushkov

National Medical Research Center for Children’s Health

Author for correspondence.
Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Nataliya N. Mazanova

National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Lyudmila M. Kuzenkova

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Nataliya V. Zhurkova

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Oksana V. Globa

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Alina Yu. Alexeeva

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Alla V. Migali

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Aleksey V. Sukhozhenko

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Mariya A. Varichkina

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Vasily V. Chernyaev

I.M. Sechenov First Moscow State Medical University

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Aliy Yu. Asanov

I.M. Sechenov First Moscow State Medical University

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Andrey P. Fisenko

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

Kirill V. Savostyanov

National Medical Research Center for Children’s Health

Email: pushkovgenetika@gmail.com

Russian Federation, Moscow

References

  1. Suzuki K., Suzuki Y. Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside beta-galactosidase. Proc. Natl. Acad. Sci. USA. 1970; 66(2): 302-9. DOI: http://doi.org/10.1073/pnas.66.2.302
  2. Wenger D.A., Rafi M.A., Luzi P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): Diagnostic and clinical implications. Hum. Mutat. 1997; 10(4): 268-79. DOI: http://doi.org/10.1002/(SICI)1098-1004(1997)10:4<268::AID-HUMU2>3.0.CO;2-D
  3. Tkacheva N.V., Soprunova I.V., Belopasov V.V. Kaz’mirchuk O.N., Tsotsonava Zh.M. Krabbe disease (Case report). Astrakhanskiy meditsinskiy zhurnal. 2014; 9(2): 141-4. (in Russian)
  4. Pannuzzo G., Graziano A.C.E., Avola R., Drago F., Cardile V. Screening for Krabbe disease: the first two years’ experience. Acta Neurol. Scand. 2019; 140(5): 359-65. DOI: http://doi.org/10.1111/ane.13153
  5. Nashabat M., Al-Khenaizan S., Alfadhel M. Report of a case that expands the phenotype of infantile Krabbe disease. Am. J. Case Rep. 2019; 20: 643-6. DOI: http://doi.org/10.12659/AJCR.914275
  6. Bascou N.A., Marcos M.C., Beltran Quintero M.L., Roosen-Marcos M.C., Cladis F.P., Poe M.D., et al. General anesthesia safety in progressive leukodystrophies: A retrospective study of patients with Krabbe disease and metachromatic leukodystrophy. Paediatr. Ana- esth. 2019; 29(10): 1053-9. DOI: http://doi.org/10.1111/pan.13714
  7. Human Gene Mutation Database. HGMD® Professional 2019.3. Available at: https://portal.biobase-international.com
  8. Breiden B., Sandhoff K. Lysosomal glycosphingolipid storage diseases. Annu. Rev. Biochem. 2019; 88: 461-85. DOI: http://doi.org/10.1146/annurev-biochem-013118-111518
  9. Wenger D.A., Rafi M.A., Luzi P., Datto J., Costantino-Ceccarini E. Krabbe disease: genetic aspects and progress toward therapy. Mol. Genet. Metab. 2019; 70(1): 1-9. DOI: http://doi.org/10.1006/mgme.2000.2990
  10. Dever D.P., Scharenberg S.G., Camarena J., Kildebeck E.J., Clark J.T., Martin R.M., et al. CRISPR/Cas9 genome engineering in engraftable human brain-derived neural stem cells. iScience. 2019; 15: 524-35. DOI: http://doi.org/10.1016/j.isci.2019.04.036
  11. Duffner P.K., Caggana M., Orsini J.J., Wenger D.A., Patterson M.C., Crosley C.J., et al. Newborn screening for Krabbe disease: the New York State model. Pediatr. Neurol. 2009; 40(4): 245-52. DOI: http://doi.org/10.1016/j.pediatrneurol.2008.11.010
  12. Orsini J.J., Kay D.M., Saavedra-Matiz C.A., Wenger D.A., Duffner P.K., Erbe R.W., et al. Newborn screening for Krabbe disease in New York State: the first eight years’ experience. Genet. Med. 2016; 18(3): 239-48. DOI: http://doi.org/10.1038/gim.2015.211
  13. Madsen A.M.H., Wibrand F., Lund A.M., Ek J., Dunø M., Østergaard E. Genotype and phenotype classification of 29 patients affected by Krabbe disease. JIMD Rep. 2019; 46(1): 35-45. DOI: http://doi.org/10.1002/jmd2.12007
  14. Luzi P., Rafi M.A., Wenger D.A. Characterization of the large deletion in the GALC gene found in patients with Krabbe disease. Hum. Mol. Genet. 1995; 4(12): 2335-8. DOI: http://doi.org/10.1093/hmg/4.12.2335
  15. Fu L. Inui K. Nishigaki T. Tatsumi N. Tsukamoto H. Kokubu C. et al. Molecular heterogeneity of Krabbe disease. J. Inherit. Metab. Dis. 1999 Apr;22(2):155-62.
  16. De Gasperi R. Gama Sosa MA. Sartorato EL. Battistini S. MacFarlane H. Gusella JF., et al. Molecular heterogeneity of late-onset forms of globoid-cell leukodystrophy. Am. J. Hum. Genet. 1996 Dec;59(6):1233-42.
  17. Elliott S., Buroker N., Cournoyer J.J., Potier A.M., Trometer J.D., Elbin C., et al. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry. Mol. Genet. Metab. 2016; 118(4): 304-9. DOI: http://doi.org/10.1016/j.ymgme.2016.05.015
  18. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., et al. Guidelines for the interpretation of human DNA sequence data obtained by method of massive parallel sequencing (MPS) (revision of 2018. 2nd version). Meditsinskaya genetika. 2019; 18(2): 3-23. DOI: http://doi.org/10.25557/2073-7998.2019.02.3-23 (in Russian)
  19. Wenger D.A. Krabbe disease. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., et al. GeneReviews®. Seattle. WA: University of Washington; 1993.
  20. Savostyanov K.V., Pushkov A.A., Murav’ova L.V., Movsisyan G.B., Rykunova A.I., Ponomarev R.V., et al. Glucosylfingosine (Lyso-GL1) may be the primary biomarker for screening Gaucher disease in Russian patients. Mol. Genet. Metab. 2019; 126(2): S130. DOI: http://doi.org/10.1016/j.ymgme.2018.12.334

Supplementary files

Supplementary Files Action
1.
Fig. 1. Chromatograms of the internal standard of galactosylcerebrosidase and analytes in a healthy child (I) and a child with КD (II) in µmol/liter/hour (on the ordinate axis: intensity, on the abscissa axis: time in minutes).

View (66KB) Indexing metadata
2.
Fig. 2. The calibration graph, the equation of the calibration characteristic, the value of the correlation coefficient.

View (123KB) Indexing metadata
3.
Fig. 3. Chromatogram of the working standard (I) and glycosylsphingosine at a concentration of 50 ng/ml (II). On the ordinate axis: intensity (×104), on the abscissa axis: time in minutes.

View (83KB) Indexing metadata
4.
Fig. 4. Relative frequencies (%) and spectrum of mutations of the GALC gene identified as a result of the study.

View (51KB) Indexing metadata

Statistics

Views

Abstract - 66

PDF (Russian) - 0

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Pushkov A.A., Mazanova N.N., Kuzenkova L.M., Zhurkova N.V., Globa O.V., Alexeeva A.Y., Migali A.V., Sukhozhenko A.V., Varichkina M.A., Chernyaev V.V., Asanov A.Y., Fisenko A.P., Savostyanov K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies