Transcranial magnetic stimulation in child neurology

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access


Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation used for research and diagnostic purposes, as well as for the treatment of a number of diseases as one of the methods of neuromodulation. In pediatrics, TMS is most often used to assess the normal maturation of the corticospinal tract when stimulating the motor areas of the cortex of healthy children with a short single pulse magnetic stimulus, and recording motor evoked potentials from different muscles of the upper and lower extremities, as well as calculating the central motor conduction time. This technique is also used in pediatric neurology to determine conduction disturbances of the pulse along the corticospinal tract and to test neuroplasticity in damage to motor areas of the cerebral cortex and descending motor pathways in such diseases as cerebral palsy, stroke, and multiple sclerosis. Another aspect of TMS application is the evaluation of cortical inhibitory mechanisms with an assessment of the indices of the cortical silent period and the ipsilateral silent period, which often change with central nervous system lesions. With TMS it is also possible to map the cortical representation of a particular muscle, which is used to evaluate functional changes of the cerebral cortex in various neurological diseases. For an accurate implementation of the TMS mapping technique, complex navigation equipment must be currently used with focal TMS. The article describes in detail these and other diagnostic methods of TMS used in child neurology. The possibilities of the therapeutic use of repetitive TMS in children’s neurological diseases are considered in separate sections.

Full Text

Restricted Access

About the authors

Aleksey L. Kurenkov

National Medical Research Center for Children’s Health

Author for correspondence.

Russian Federation, Moscow

доктор мед. наук, зав. лаб. нервных болезней у детей Центра детской психоневрологии

Ada R. Artemenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)


Russian Federation, Moscow


  1. Garvey M.A., Gilbert D.L. Transcranial magnetic stimulation in children. Eur. J. Paediatr. Neurol. 2004; 8(1): 7-19. DOI:
  2. Frye R.E., Rotenberg A., Ousley M., Pascual-Leone A. Transcranial magnetic stimulation in child neurology: current and future directions. J. Child Neurol. 2008; 23(1): 79-96. DOI:
  3. Garvey M.A., Mall V. Transcranial magnetic stimulation in children. Clin. Neurophysiol. 2008; 119(5): 973-84. DOI:
  4. Kurenkov A.L., Nikitin S.S. Transcranial magnetic stimulation. In: Zykov V.P., ed. Diagnosis and Treatment of Diseases of the Nervous System in Children (Clinical Guide for Children’s Neurologists, Pediatricians, Children’s Infectionists) [Diagnostika i lechenie zabolevaniy nervnoy sistemy u detey (klinicheskoe rukovodstvo dlya detskikh nevrologov, pediatrov, detskikh infektsionistov)]. Moscow: Triada-Kh; 2013: 408-24. (in Russian)
  5. Hameed M.Q., Sameer C., Dhamne S.C., Gersner R., Kaye H.L., Oberman L.M., et al. Transcranial magnetic and direct current stimulation in children. Curr. Neurol. Neurosci. Rep. 2017; 17(2): 11. DOI:
  6. Rajapakse T., Kirton A. Non-invasive brain stimulation in children: applications and future directions. Transl. Neurosci. 2013; 4(2). DOI:
  7. Narayana S., Papanicolaou A.C., McGregor A., Boop F.A., Wheless J.W. Clinical applications of transcranial magnetic stimulation in pediatric neurology. J. Child Neurol. 2015; 30(9): 1111-24. DOI:
  8. Doruk Camsari D., Kirkovski M., Croarkin P.E. Therapeutic applications of invasive neuromodulation in children and adolescents. Psychiatr. Clin. North Am. 2018; 41(3): 479-83. DOI:
  9. Finisguerra A., Borgatti R., Urgesi C. Non-invasive brain stimulation for the rehabilitation of children and adolescents with neurodevelopmental disorders: a systematic review. Front. Psychol. 2019; 10: 135. DOI:
  10. Malone L.A., Sun L.R. Transcranial magnetic stimulation for the treatment of pediatric neurological disorders. Curr. Treat. Options Neurol. 2019; 21(11): 58. DOI:
  11. Lefaucheur J.P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D.H., et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014; 125(11): 2150-206. DOI:
  12. Egorov I.V., Glukhov B.M. Indicators of transcranial magnetic stimulation in patients with epilepsy, the effect of transcranial magnetic stimulation on cortical rhythms in patients with epilepsy. In: Third Eastern European Conference «Epilepsy and Clinical Neurophysiology» [Epilepsiya i klinicheskaya neyrofiziologiya: Trudy III Vostochno-evropeyskoy konferentsii]. Gurzuf; 2001: 42-5. (in Russian)
  13. Nikitin S.S., Kurenkov A.L. Magnetic Stimulation in the Diagnosis and Treatment of Diseases of the Nervous System [Magnitnaya stimulyatsiya v diagnostike i lechenii bolezney nervnoy sistemy]. Moscow: SASHKO; 2003. (in Russian)
  14. Allen C.H., Kluger B.M., Buard I. Safety of transcranial magnetic stimulation in children: a systematic review of the literature. Pediatr. Neurol. 2017; 68: 3-17. DOI:
  15. Suponeva N.A., Bakulin I.S., Poydasheva A.G., Piradov M.A. Safety of transcranial magnetic stimulation: review of international recommendations and new data. Nervno-myshechnye bolezni. 2017; 7(2): 23-36. DOI: (in Russian)
  16. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009; 120(12): 2008-39. DOI:
  17. Collado-Corona M.A., Mora-Magaña I., Cordero G.L., Toral-Martiñón R., Shkurovich-Zaslavsky M., Ruiz-Garcia M., et al. Transcranial magnetic stimulation and acoustic trauma or hearing loss in children. Neurol. Res. 2001; 23(4): 343-6. DOI:
  18. Kirton A., deVeber G., Gunraj C., Chen R. Neurocardiogenic syncope complicating pediatric transcranial magnetic stimulation. Pediatr. Neurol. 2008; 39(3): 196-7. DOI:
  19. Garvey M.A., Kaczynski K.J., Becker D.A., Bartko J.J. Subjective reactions of children to single-pulse transcranial magnetic stimulation. J. Child Neurol. 2001; 16(12): 891-4. DOI:
  20. Eyre J.A., Taylor J.P., Villagra F., Smith M., Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001; 57(9): 1543-54. DOI:
  21. Eyre J.A. Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 2007; 31(8): 1136-49. DOI:
  22. Muller K., Homberg V., Lenard H.G. Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr. Clin. Neurophysiol. 1991; 81(1): 63-70. DOI:
  23. Nezu A., Kimura S., Uehara S., Kabayashi T., Tanaka M., Saito K. Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev. 1997; 19(3): 176-80. DOI:
  24. Garvey M.A., Ziemann U., Bartko J.J., Denckla M.B., Barker C.A., Wassermann E.M. Cortical correlates of neuromotor development in healthy children. Clin. Neurophysiol. 2003; 114(9): 1662-70. DOI:
  25. Rossini P.M., Burke D., Chen R., Cohen L.G., Daskalakis Z., Di Iorio R., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015; 126(6): 1071-107. DOI:
  26. Heinen F., Fietzek U.M., Berweck S., Hufschmidt A., Deuschl G., Korinthenberg R. Fast corticospinal system and motor performance in children: conduction proceeds skill. Pediatr. Neurol. 1998; 19(3): 217-21. DOI:
  27. Muller K., Kass-Iliyya F., Reitz M. Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann. Neurol. 1997; 42(5): 705-11. DOI:
  28. Maegaki Y., Maeoka Y., Ishii S., Shiota M., Takeuchi A., Yoshino K., et al. Mechanisms of central motor reorganization in pediatric hemiplegic patients. Neuropediatrics. 1997; 28(3): 168-74. DOI:
  29. Nezu А., Kimura S., Takeshita S. et al. Functional recovery in hemiplegic cerebral palsy: ipsilateral electromyographic responses to focal transcranial magnetic stimulation. Brain Dev. 1999; 21(3): 162-165. DOI:
  30. Nikitin S.S., Kurenkov A.L. Methodological Foundations of Transcranial Magnetic Stimulation in Neurology and Psychiatry [Metodicheskie osnovy transkranial’noy magnitnoy stimulyatsii v nevrologii i psikhiatrii]. Moscow: IPTs MASKA; 2006. (in Russian)
  31. Mall V., Berweck S., Fietzek U.M., Glocker F.X., Oberhuber U., Walther M., et al. Low level of intracortical inhibition in children shown by transcranial magnetic stimulation. Neuropediatrics. 2004; 35(2): 120-5. DOI:
  32. Müller K., Hömberg V., Aulich A., Lenard H.G. Magnetoelectrical stimulation of motor cortex in children with motor disturbances. Electroencephalogr. Clin. Neurophysiol. 1992; 85(2): 86-94. DOI:
  33. Velizarova R., Yotova R., Bojilova R., Tomov V. Comparative study of the conduction velocity across the corticospinal tracts in children with different forms of cerebral palsy. Brain Dev. 1998; 20(6): 411.
  34. Maegaki Y., Maeoka Y., Ishii S., Eda I., Ohtagaki A., Kitahara T., et al. Central motor reorganization in cerebral palsy patients with bilateral cerebral lesions. Pediatr. Res. 1999; 45(4 Pt. 1): 559-67. DOI:
  35. Kirton A. Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy. Pediatr. Neurol. 2013; 48(2): 81-94. DOI:
  36. Staudt M. Reorganization of the developing human brain after early lesions. Dev. Med. Child Neurol. 2007; 49(8): 564. DOI:
  37. Carr L.J. Development and reorganization of descending motor pathways in children with hemiplegic cerebral palsy. Acta Paediatr. Suppl. 1996; 416: 53-7. DOI:
  38. Vandermeeren Y., Sébire G., Grandin C.B., Thonnard J.L., Schlögel X., De Volder A.G. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study. Neuroimage. 2003; 20(1): 289-301. DOI:
  39. Staudt M. Reorganization after pre- and perinatal brain lesions. J. Anat. 2010; 217(4): 469-74. DOI:
  40. Kurenkov A.L., Nikitin S.S. Transcranial magnetic stimulation. In: Petrukhin A.S., ed. Clinical Pediatric Neurology [Klinicheskaya detskaya nevrologiya]. Moscow: Meditsina; 2008: 170-5. (in Russian)
  41. Kesar T.M., Sawaki L., Burdette J.H., Cabrera M.N., Kolaski K., Smith B.P., et al. Motor cortical functional geometry in cerebral palsy and its relationship to disability. Clin. Neurophysiol. 2012; 123(7): 1383-90. DOI:
  42. Kowalski J.L., Nemanich S.T., Nawshin T., Chen M., Peyton C., Zorn E., et al. Motor evoked potentials as potential biomarkers of early atypical corticospinal tract development in infants with perinatal stroke. J. Clin. Med. 2019; 8(8). DOI:
  43. Papadelis C., Kaye H., Shore B., Snyder B., Grant P.E., Rotenberg A. Maturation of corticospinal tracts in children with hemiplegic cerebral palsy assessed by diffusion tensor imaging and transcranial magnetic stimulation. Front. Hum. Neurosci. 2019; 13: 254. DOI:
  44. Thickbroom G.W., Byrnes M.L., Archer S.A., Nagarajan L., Mastaglia F.L. Differences in sensory and motor cortical organization following brain injury early in life. Ann. Neurol. 2001; 49(3): 320-7.
  45. Redman T.A., Gibson N., Finn J.C., Bremner A.P., Valentine J., Thickbroom G.W. Upper limb corticomotor projections and physio- logical changes that occur with botulinum toxin-A therapy in children with hemiplegic cerebral palsy. Eur. J. Neurol. 2008; 15(8): 787-91. DOI:
  46. Gillick B.T., Krach L.E., Feyma T., Rich T.L., Moberg K., Thomas W., et al. Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement therapy in pediatric hemiparesis: a randomized controlled trial. Dev. Med. Child Neurol. 2014; 56(1): 44-52. DOI:
  47. Parvin S., Shahrokhi A., Tafakhori A., Irani A., Rasteh M., Mirbagheri M.M. Therapeutic effects of repetitive transcranial magnetic stimulation on corticospinal tract activities and neuromuscular properties in children with cerebral palsy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018; 2018: 2218-21. DOI:
  48. Rajak B.L., Gupta M., Bhatia D., Mukherjee A. Increasing number of therapy sessions of repetitive transcranial magnetic stimulation improves motor development by reducing muscle spasticity in cerebral palsy children. Ann. Indian Acad. Neurol. 2019; 22(3): 302-7. DOI:
  49. Gillick B.T., Krach L.E., Feyma T., Rich T.L., Moberg K., Menk J., et al. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis. Arch. Phys. Med. Rehabil. 2015; 96(4 Suppl.): S104-13. DOI:
  50. Valle A.C., Dionisio K., Pitskel N.B., Pascual-Leone A., Orsati F., Ferreira M.J., et al. Low and high frequency repetitive transcranial magnetic stimulation for the treatment of spasticity. Dev. Med. Child Neurol. 2007; 49(7): 534-8. DOI:
  51. Elbanna S.T., Elshennawy S., Ayad M.N. Noninvasive brain stimulation for rehabilitation of pediatric motor disorders following brain injury: systematic review of randomized controlled trials. Arch. Phys. Med. Rehabil. 2019; 100(10): 1945-63. DOI:
  52. Kirton A., Chen R., Friefeld S., Gunraj C., Pontigon A.M., Deveber G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial. Lancet Neurol. 2008; 7(6): 507-13. DOI:
  53. Chen R., Spencer D.C., Weston J., Nolan S.J. Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database Syst. Rev. 2016; (8): CD011025. DOI:
  54. Shimizu T., Maehara T., Hino T., Komori T., Shimizu H., Yagishita A., et al. Effect of multiple subpial transection on motor cortical excitability in cortical dysgenesis. Brain. 2001; 124(Pt. 7): 1336-49. DOI:
  55. Badawy R.A., Macdonell R.A., Berkovic S.F., Newton M.R., Jackson G.D. Predicting seizure control: cortical excitability and antiepileptic medication. Ann. Neurol. 2010; 67(1): 64-73. DOI:
  56. Cantello R., Varrasi C., Tarletti R., Cecchin M., D’Andrea F., Veggiotti P., et al. Ketogenic diet: electrophysiological effects on the normal human cortex. Epilepsia. 2007; 48(9): 1756-63. DOI:
  57. Morales O.G., Henry M.E., Nobler M.S., Wassermann E.M., Lisanby S.H. Electroconvulsive therapy and repetitive transcranial magnetic stimulation in children and adolescents: a review and report of two cases of epilepsia partialis continua. Child Adolesc. Psychiatr. Clin. N. Am. 2005; 14(1): 193-210. DOI:
  58. Fregni F., Boggio P.S., Valle A.C., Otachi P., Thut G., Rigonatti S.P., et al. Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1Hz rTMS in patients with juvenile myoclonic epilepsy. Clin. Neurophysiol. 2006; 117(6): 1217-27. DOI:
  59. Rotenberg A., Bae E.H., Muller P.A., Riviello J.J., Bourgeois B.F., Blum A.S., et al. In-session seizures during low-frequency repetitive transcranial magnetic stimulation in patients with epilepsy. Epilepsy Behav. 2009; 16(2): 353-5. DOI:
  60. Sun W., Mao W., Meng X., Wang D., Qiao L., Tao W., et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012; 53(10): 1782-9. DOI:
  61. Dan B., Christiaens F., Christophe C., Dachy B. Transcranial magnetic stimulation and other evoked potentials in pediatric multiple sclerosis. Pediatr. Neurol. 2000; 22(2): 136-8. DOI:
  62. Ucles P., Serrano J.L., Rosa F. Central conduction time of magnetic brain stimulation in attention-deficit hyperactivity disorder. J. Child Neurol. 2000; 15(11): 723-8. DOI:
  63. Moll G.H., Heinrich H., Rothenberger A. Transcranial magnetic stimulation in child and adolescent psychiatry: excitability of the motor system in tic disorders and/or attention-deficit hyperactivity disorders. Z. Kinder Jugendpsychiatr. Psychother. 2001; 29(4): 312-23. DOI: (in German)
  64. Gilbert D.L., Isaacs K.M., Augusta M., Macneil L.K., Mostofsky S.H. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology. 2011; 76(7): 615-21. DOI:
  65. Buchmann J., Wolters A., Haessler F., Bohne S., Nordbeck R., Kunesch E. Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD). Clin. Neurophysiol. 2003; 114(11): 2036-42. DOI:
  66. Garvey M.A., Barker C.A., Bartko J.J., Denckla M.B., Wassermann E.M., Castellanos F.X. et al. The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 2005; 116: 1889-1896. doi: 10.1016/j.clinph.2005.03.018
  67. Dutra T.G., Baltar A., Monte-Silva K.K. Motor cortex excitability in attention-deficit hyperactivity disorder (ADHD): A systematic review and meta-analysis. Res. Dev. Disabil. 2016; 56: 1-9. DOI:
  68. Weaver L., Rostain A.L., Mace W., Akhtar U., Moss E., O’Reardon J.P. Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: a pilot study. J. ECT. 2012; 28(2): 98-103. DOI:
  69. Gómez L., Vidal B., Morales L., Báez M., Maragoto C., Galvizu R., et al. Low frequency repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder. Preliminary results. Brain Stimul. 2014; 7(5): 760-2. DOI:
  70. Gilbert D.L., Bansal A.S., Sethuraman G., Sallee F.R., Zhang J., Lipps T., et al. Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome. Mov. Disord. 2004; 19(4): 416-25. DOI:
  71. Kwon H.J., Lim W.S., Lim M.H., Lee S.J., Hyun J.K., Chae J.H., et al. 1-Hz low frequency repetitive transcranial magnetic stimulation in children with Tourette’s syndrome. Neurosci. Lett. 2011; 492(1): 1-4. DOI:
  72. Le K., Liu L., Sun M., Hu L., Xiao N. Transcranial magnetic stimulation at 1 Hertz improves clinical symptoms in children with Tourette syndrome for at least 6 months. J. Clin. Neurosci. 2013; 20(2): 257-62. DOI:
  73. Grados M., Huselid R., Duque-Serrano L. Transcranial magnetic stimulation in Tourette syndrome: a historical perspective, its current use and the influence of comorbidities in treatment response. Brain Sci. 2018; 8(7). DOI:
  74. Nezu A., Kimura S., Takeshita S., Tanaka M. Characteristic response to transcranial magnetic stimulation in Rett syndrome. Electroencephalogr. Clin. Neurophysiol. 1998; 109(2): 100-3. DOI:
  75. Voytenkov V.B., Ekusheva E.V., Skripchenko N.V., Damulin I.V. Transcranial magnetic stimulation in the diagnostic and treatment of pain syndromes in children and adults. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019; 119(4): 93-9. DOI: (in Russian)
  76. Brighina F., Raieli V., Messina L.M., Santangelo G., Puma D., Drago F., et al. Non-invasive brain stimulation in pediatric migraine: a perspective from evidence in adult migraine. Front. Neurol. 2019; 10: 364. DOI:
  77. Cantone M., Lanza G., Le Pira A., Barone R., Pennisi G., Bella R., et al. Adjunct diagnostic value of transcranial magnetic stimulation in mucopolysaccharidosis-related cervical myelopathy: a pilot study. Brain Sci. 2019; 9(8). DOI:
  78. Alfonsi E., Merlo I.M., Monafo V., Lanzi G., Ottolini A., Veggiotti P., et al. Electrophysiologic study of central motor pathways in ataxia-telangiectasia. J. Child Neurol. 1997; 12(5): 327-31. DOI:
  79. Roricht S., Meyer B.U., Irlbacher K., Ludolph A.C. Impairment of callosal and corticospinal system function in adolescents with early-treated phenylketonuria: a transcranial magnetic stimulation study. J. Neurol. 1999; 246(1): 21-30. DOI:



Abstract - 176

PDF (Russian) - 2


Article Metrics

Metrics Loading ...




  • There are currently no refbacks.

Copyright (c) 2020 Kurenkov A.L., Artemenko A.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies