Магниточувствительная люминесценция рекомбинационных эксиплексов диметил- и диметокситолана с N,N-диметиланилином, генерируемых рентгеновским излучением в неполярном растворе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

На примере трех соединений показано, что при рентгеновском облучении в неполярном растворе донорно-замещенные диметил- и диметокси-(дифенилацетилены) образуют эксиплексы в паре с N,N-диметиланилином через рекомбинацию соответствующих ион-радикалов с интенсивной магниточувствительной полосой люминесценции. Эксиплексы диметилдифенилацетиленов обладают максимальным световыходом по сравнению со всеми известными рекомбинационными эксиплексами дифенилацетиленов. Изученные соединения и их аналоги как класс могут рассматриваться в качестве потенциальных источников синего излучения в органических электролюминесцентных системах, в том числе магниточувствительных.

Об авторах

Д. В. Стась

Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской Академии наук; Новосибирский государственный университет

Email: stass@kinetics.nsc.ru
630090 Новосибирск, Россия; 630090 Новосибирск, Россия

В. Н. Верховлюк

Исследовательский центр физики имени Вигнера

Н-1525 Будапешт, Венгрия

А. А. Степанов

Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской Академии наук

630090 Новосибирск, Россия

С. Ф. Василевский

Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской Академии наук

630090 Новосибирск, Россия

Список литературы

  1. Belloni J., Delcourt M.O., Houee-Levin C., Mostafavi M. // Annu. Rep. Prog. Chem. Sect. C. Phys. Chem. 2000. V. 96. P. 225–295. https://doi.org/10.1039/B001203N
  2. Green N.J.B., Pilling M.J., Pimblott S.M. // Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 1989. V. 34. P. 105–114. https://doi.org/10.1016/1359-0197(89)90014-3
  3. Anisimov O.A. Ion pairs in liquids. In: Radical ionic systems: Properties in condensed phases. V. 6. Lund A., Shiotani M. (ed.). Dordrecht, Springer, 1991. P. 285–309. https://doi.org/10.1007/978-94-011-3750-8_10
  4. Shkrob I.A., Sauer M.C., Trifunac A.D. Radiation chemistry of organic liquids: Saturated hydrocarbons. In: Studies in physical and theoretical chemistry. V. 87. Jonah C.D., Madhava Rao B.S. (eds.). Amsterdam, Elsevier, 2001. P. 175–221. https://doi.org/10.1016/S0167-6881(01)80011-2
  5. Braun D. // Mater. Today. 2002. V. 5. № 6. P. 32–39. https://doi.org/10.1016/S1369-7021(02)00637-5
  6. Sirringhaus H. // Adv. Mater. 2014. V. 26. P. 1319–1335. https://doi.org/10.1002/adma.201304346
  7. Chen Y., Liu R., Cai M., Shinar R., Shinar J. // Phys. Rev. B. 2012. V. 86. Art. 235442. https://doi.org/10.1103/PhysRevB.86.235442
  8. Shinar J. // Laser. Photonics. Reviews. 2012. V. 6. P. 767–786. https://doi.org/10.1002/lpor.201100026
  9. Tang C.W., VanSlyke S.A. // Appl. Phys. Lett. 1987. V. 51. P. 913–915. https://doi.org/10.1063/1.98799
  10. Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., MacKay K., Friend R.H., Burns P.L., Holmes A.B. // Nature. 1990. V. 347. № 6293. P. 539–541. https://doi.org/10.1038/347539a0
  11. Reineke S., Walzer K., Leo K. // Phys. Rev. B. 2007. V. 75. Art. 125328. https://doi.org/10.1103/PhysRevB.75.125328
  12. Cocchi M., Kalinowski J., Stagni S., Muzzioli S. // Appl. Phys. Lett. 2009. V. 94. Art. 083306. https://doi.org/10.1063/1.3081491
  13. Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C. // Nature. 2012. V. 492. № 7428. P. 234–238. https://doi.org/10.1038/nature11687
  14. Wong M.Y., Zysman-Colman E. // Adv. Mater. 2017. V. 29. Art. 1605444. https://doi.org/10.1002/adma.201605444
  15. Rishi V., Taka A.A., Hratchian H.P., McCaslin L.M. // J. Phys. Chem. Lett. 2025. V. 16. № 21. P. 5213–5220. https://doi.org/10.1021/acs.jpclett.5c00827
  16. Skuodis E., Tomkeviciene A., Reghu R., Peciulyte L., Ivaniuk K., Volyniuk D., Bezvikonnyi O., Bagdziunas G., Gudeika D., Grazulevicius J.V. // Dyes. Pigment. 2017. V. 139. P. 795–807. https://doi.org/10.1016/j.dyepig.2017.01.016
  17. Sarma M., Chen L.-M., Chen Y.-S., Wong K.-T. // Mater. Sci. Eng. R. 2022. V. 150. Art. 100689. https://doi.org/10.1016/j.mser.2022.100689
  18. Dong B., Yan J., Li G., Xu Y., Zhao B., Chen L., Wang H., Li W. // Org. Electron. 2022. V. 106. Art. 106528. https://doi.org/10.1016/j.orgel.2022.106528
  19. Safonov A.A., Bagaturyants A.A., Sazhnikov V.A. // J. Phys. Chem. A. 2015. V. 119. P. 8182–8187. https://doi.org/10.1021/acs.jpca.5b03519
  20. Krueger R.A., Blanquart G. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 10325–10335. https://doi.org/10.1039/C9CP02027F
  21. do Casal M.T., Cardozo T.M. // Theor. Chem. Acc. 2020. V. 139. Art. 144. https://doi.org/10.1007/s00214-020-02658-0
  22. Ottolenghi M. / /Acc. Chem. Res. 1973. V. 6. P. 153–160. https://doi.org/10.1021/ar50065a002
  23. Birks J.B. // Rep. Prog. Phys. 1975. V. 38. P. 903–974. http://dx.doi.org/10.1088/0034-4885/38/8/001
  24. Kuzmin V.A., Darmanyan A.P., Levin P.P. // Chem. Phys. Lett. 1979. V. 63. P. 509–514. https://doi.org/10.1016/0009-2614(79)80701-0
  25. Armstrong N.R., Wightman R.M., Gross E.M. // Annu. Rev. Phys. Chem. 2001. V. 52. P. 391–422. https://doi.org/10.1146/annurev.physchem.52.1.391
  26. Electrogenerated chemiluminescence. Bard A.J. (ed.). Marcel Dekker, New York, 2004. 552 p.
  27. Ketter J.B., Wightman R.M. // J. Am. Chem. Soc. 2004. V. 126. P. 10183–10189. https://doi.org/10.1021/ja047602t
  28. Мельников А.Р., Кальнеус Е.В., Королев В.В., Дранов И.Г., Стась Д.В. // ДАН. 2013. Т. 452. С. 638–641. https://doi.org/10.1134/S0012501613100084
  29. Melnikov A.R., Kalneus E.V., Korolev V.V., Dranov I.G., Kruppa A.I., Stass D.V. // Photochem. Photobiol. Sci. 2014. V. 13. P. 1169–1179. https://doi.org/10.1039/C3PP50432H
  30. Ferrante C., Kensy U., Dick B. // J. Phys. Chem. 1993. V. 97. P. 13457–13463. https://doi.org/10.1021/j100153a008
  31. Hirata Y., Okada T., Mataga N., Nomoto T. // J. Phys. Chem. 1992. V. 96. P. 6559–6563. https://doi.org/10.1021/j100195a011
  32. Бучаченко А.А., Сагдеев Р.З., Салихов К.М., Магнитные и спиновые эффекты в химических реакциях. Новосибирск: Наука, 1978. 296 с.
  33. Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. // УФН. 1988. Т. 155. С. 3–45. https://doi.org/10.3367/UFNr.0155.198805a.0003
  34. Chakraborty B., Sengupta C., Basu S. // J. Photochem. Photobiol. 2024. V. 21. 100238. https://doi.org/10.1016/j.jpap.2024.100238
  35. Borovkov V., Stass D., Bagryansky V., Molin Y. Study of spin-correlated radical ion pairs in irradiated solutions by optically detected EPR and related techniques. In: Applications of EPR in radiation research. Lund A., Shiotani M. (eds.). Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-09216-4_17
  36. Sonogashira K., Tohda Y., Hagihara N. // Tetrahedron Lett. 1975. V. 16. P. 4467–4470. https://doi.org/10.1016/S0040-4039(00)91094-3
  37. Stephens R.D., Castro C.E. // J. Org. Chem. 1963. V. 28. P. 3313-3315. https://doi.org/10.1021/jo01047a008
  38. Василевский С.Ф., Степанов А.А. // ЖОХ. 2023 Т. 93 Вып. 10, С. 1479-1556. https://doi.org/10.31857/S0044460X23100013
  39. Nikul’shin P.V., Fedunov R.G., Kuibida L.V., Maksimov A.M., Glebov E.M., Stass D.V. // Int. J. Mol. Sci. 2023, V. 24, Art. 7568. https://doi.org/10.3390/ijms24087568
  40. Stass D.V., Vorotnikova N.A., Shestopalov M.A. // J. Appl. Phys. 2021. V. 129. Art. 183102. https://doi.org/10.1063/5.0049769
  41. Verkhovlyuk V.N., Stass D.V., Lukzen N.N., Molin Y.N. // Chem. Phys. Lett. 2005. V. 413. P. 71–77. https://doi.org/10.1016/j.cplett.2005.07.060
  42. Васильев А.В., Руденко А.П. // ЖОрХ. 1997. Т. 33. Вып. 11. С. 1639–1667.
  43. Руденко А. П., Васильев А.В. // ЖОрХ. 1995. Т. 31. Вып. 10. С. 1502–1522.
  44. Melnikov A.R., Davydova M.P., Sherin P.S., Korolev V.V., Stepanov A.A., Kalneus E.V., Benassi E., Vasilevsky S.F., Stass D.V. // J. Phys. Chem. A. 2018. V. 122. P. 1235–1252. https://doi.org/10.1021/acs.jpca.7b11634
  45. Amatatsu Y., Hosokawa M. // J. Phys. Chem. A. 2004. V. 108. P. 10238−10244. https://doi.org/10.1021/jp047308n
  46. Wierzbicka M., Bylinska I., Czaplewski C., Wiczk W. // RSC Adv. 2015, V. 5. P. 29294−29303. https://doi.org/10.1039/C5RA01077B
  47. Koenen J.-M., Zhu X., Pan Z., Feng F., Yang J., Schanze K.S. // ACS Macro. Lett. 2014. V. 3. P. 405–409. https://doi.org/10.1021/mz500067k
  48. Berlman I.B. Handbook of fluorescence spectra of aromatic molecules. New York: Academic Press, 1971. https://doi.org/10.1016/B978-0-12-092656-5.X5001-1
  49. Nikul’shin P.V., Filippova E.A., Fedunov R.G., Kuibida L.V., Glebov E.M., Stass D.V. // High Energy Chem. 2023. V. 57. P. S445–S454. https://doi.org/10.1134/S0018143923090102
  50. Sergey N.V., Verkhovlyuk V.N., Kalneus E.V., Korolev V.V., Melnikov A.R., Burdukov A.B., Stass D.V., Molin Yu.N. // Chem. Phys. Lett. 2012. V. 552. P. 32–37. https://doi.org/10.1016/j.cplett.2012.08.069
  51. Borovkov V.I., Bagryansky V.A., Yeletskikh I.V., Molin Yu.N. // Mol. Phys. 2002. V. 100. P. 1379–1384. https://doi.org/10.1080/00268970110117908
  52. Toriyama K., Nunome K., Iwasaki M. // J. Chem. Phys. 1982. V. 77. P. 5891–5912. https://doi.org/10.1063/1.443863

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025