Интегрируемость геодезического потока на пересечении нескольких софокусных квадрик
- Авторы: Белозеров Г.В.1
- 
							Учреждения: 
							- Московский государственный университет имени М.В. Ломоносова
 
- Выпуск: Том 509 (2023)
- Страницы: 5-7
- Раздел: МАТЕМАТИКА
- URL: https://journals.eco-vector.com/2686-9543/article/view/647847
- DOI: https://doi.org/10.31857/S2686954322600628
- EDN: https://elibrary.ru/CQSGJC
- ID: 647847
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Классическая теорема Якоби–Шаля утверждает, что касательные линии, проведенные к геодезической на \(n\)-осном эллипсоиде в евклидовом \(n\)-мерном пространстве, касаются помимо этого эллипсоида еще \((n - 2)\)-х софокусных с ним квадрик, общих для всех точек данной геодезической. Из этой теоремы немедленно следует интегрируемость геодезического потока на эллипсоиде. В данной работе доказывается обобщение этого результата для геодезического потока на пересечении нескольких софокусных квадрик. Кроме того, если добавить к такой системе потенциал Гука с центром в начале координат, интегрируемость задачи сохранится.
Ключевые слова
Об авторах
Г. В. Белозеров
Московский государственный университетимени М.В. Ломоносова
							Автор, ответственный за переписку.
							Email: gleb0511beloz@yandex.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Якоби К. Лекции по динамике. М.: Гостехиздат, 1936.
- Chasles M. Sur les lignes géodésiques et les lignes de courbure des surfaces du second degré // Journal de Mathématiques Pures et Appliqués. 1846. V. 11. P. 5–20.
- Арнольд В.И. Несколько замечаний об эллиптических координатах // Дифференциальная геометрия, группы Ли и механика. VI, Зап. научн. сем. ЛОМИ, 133, Изд-во “Наука”, Ленинград. отд., Л., 1984. С. 38–50.
- Арнольд В.И. Математические методы классической механики. М.: Наука, 1989. С. 472.
- Козлов В.В., Трещев Д.В. Биллиарды. Генетическое введение в динамику систем с ударами. М.: Изд-во МГУ, 1991.
- Драгович В., Раднович М. Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе. М.; Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2010.
- Козлов В.В. Топологические препятствия к интегрируемости натуральных механических систем // Докл. АН СССР. 1979. Т. 249. № 6. С. 1299–1302.
- Gitler S., Medrano S.L. Intersections of quadrics, moment-angle manifolds and connected sums // Geometry & Topology. 2013. V. 17. P. 1497–1534.
- Козлов В.В. Некоторые интегрируемые обобщения задачи Якоби о геодезических на эллипсоиде // ПММ. 1995. Т. 59. № 1. С. 3–9.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

