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Incidence of Parkinson disease progressively grows with increasing age and percentage of elderly people in the
global population. Clear understanding of the causes of dopaminergic neurons’ death in Substantia nigra and Par-
kinson disease pathogenesis are currently absent, not speaking of an efficient therapy. However, an early diagnosis of
dopaminergic neurons’ degeneration and prescription of dopamine replacement therapy significantly slow down the rate
of symptoms’ progression. An increased concentration of iron in Substantia nigra of Parkinson disease patients has
been shown in several studies. In this review we summarized the data concerning a potential significance of lactofer-
rin, the iron-binding protein of exocrine secretions and neutrophils, for early diagnosis and treatment of Parkinson
disease. Salivary and lacrimal lactoferrin levels in Parkinson disease patients were higher than those observed in the
control group. Plasma levels of lactoferrin inversely correlated with Parkinson disease severity even after treatment
with Levodopa, a dopamine agonist, and with monoaminooxidase inhibitors. Lactoferrin levels in cerebrospinal fluid
of Parkinson disease patients negatively correlated with the tumor necrosis factor-alpha concentration. Lactoferrin
treatment of rodents with several experimental models of Parkinson disease (induced by rotenone, MPTP) protected
neurons and mitigated the symptoms of neurodegeneration. Some contradictions about the positive effects of lacto-
ferrin as a remedy in Parkinson disease animal models and possible participation of lactoferrin in accumulation of
iron in neurons are discussed.
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3aboneBaeMOCTh 00Jie3HbIO [TapKMHCOHA TTPOTrPECCUBHO PACTET IO MEpPe YBEJIUUYECHMUS IPOJOIKUTEIbHOCTU KU3-
HU M JOJY MOXWIBIX JIOAei B MUPOBOM MOMyJsiluMU. B HacTosinee BpeMs He CyIIecTBYeT 3(h(MEKTUBHBIX METO-
JIOB Tepaliy, YeTKOro IMMOHUMaHUs MaToreHe3a 0oje3HM [lapKMHCOHA WM MPUYMH TMOEIU J10(PaMHUHOBBIX HEMPOHOB
B Substantia nigra. OIHAKO paHHsSI TUATHOCTUKA AereHepaluy H0(aMUHOBBIX HEMPOHOB M CBOEBPEMEHHOE Ha-
3HaYeHMe TodaMUH-3aMeIIAoIIell Tepauy 3HAYUTEIbHO CHIUXKAIOT CKOPOCTD IPOSIBIIEHUs] CUMIITOMOB 3a00JIeBaHUSL.
B psine uccnenoBaHuii 6pUIO0 MOKa3aHO, UTO Mpu Oosie3Hu [lapkuHcoHa B Substantia nigra HaKarIMBaeTCs XKeJe30.
B manHOM 0630pe CyMMUpPOBaHBI TaHHBIE O TIOTEHIIMAIe UCTIOb30BaHMS JIAKTO(EeppHHA, KeJIe30CBSI3bIBAIONIETO Oeika
SK30KPUHHBIX CEKPETOB ¥ HEUTPOMWIIOB [UIsl PaHHEN TMATHOCTUKU U Teparnuu 6oie3nu Ilapkuncona. KoHueHTparus
JIakTo(eppUHA B CIIIOHHOM M CJIE3HOM XKUAKOCTHU IMALIMEHTOB ¢ 00J1e3HbI0 [IapKrHCOHA JOCTOBEPHO BHIIIIE, YEM B KOH-
TPOJIbHBIX oOpa3iax. KoHueHTpanus JakTodpepprHa B Iia3Me KpoBU MAlMEHTOB ¢ 0ose3Hblo [lapkuHcoHa 06paTHO
KOPPEIUPYET C TSIKECThIO CUMITTOMOB Ja)Ke IMOcje MPUMEHEHMST JeBOAOIBI, aTOHUCTOB TodaMWHA U WHTMOMTOPOB
MOHOAMWHOOKCHIa3bl. KoHIIeHTpalust JakTopeppruHa B CTMTHHOMO3TOBOM XXMIKOCTH 0OpaTHO KOppeupoBaia ¢ KOH-
LeHTpaueil dakropa HeKposa omyxonu-aibda. BBemenue nakTodeppuHa IpbhI3yHaM C PasIMYHBIMUA BapUaHTaMU

List of abbreviations

DA — dopamine; LF — lactoferrin; MPTP — 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD — Parkinson disease; SN — Substantia
nigra; SNpc — Substantia nigra pars compacta.
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PaXXEHHOCTb KJIMHWYECKUX MPOSIBIEHUI HelipoaereHepaluu. B 063ope o6cyXIeHbl HEKOTOPble MPOTUBOPEUHST MEXIY

‘ 9KCIIepUMEHTaIbHOUN 60Je3HM [lapkuHcoHa (MHAYKUMS poTeHOHOM, MPTP) 3ammuinano HeMpoHBI U CHMXXAIO BbI-

JNAHHBIMM O MO3UTUBHOM JIEVCTBUN naKTO(pepana Ipu MOoACINPOBaHUU 00J1e3HU napKV[HCOHa Y XKMBOTHBLIX U BO3-
MO2KHOCTHU y4acCTusd HaKTO(l)eppI/IHa B HAKOIUICHUM 2XKE€JI€3a B HeﬁpOHaX.

KmoueBble ciioBa: 60je3Hb [lapkuHCcOHA; JakTO(EppUH; XKeJle30.

Introduction

Parkinson disease (PD) is the major cause of
slowly progressive parkinsonism, a clinical syn-
drome comprising combinations of motor and non-
motor symptoms. The incidence of PD is estimated
between 10 and 50 per 100,000 person-years, and its
prevalence rate is approximately 0.3% of the entire
population, affecting more than 1% of individuals
above 60 years and up to 4% of those older than
80 years [1, 2]. The nigrostriatal dopamine (DA)
system in aging shares important biological features
with PD. Dopaminergic neurodegeneration in PD
presents a complex biology of interacting factors.
Many of those factors are also present during the
aging of DA system. In normal aging a reduced
viability of dopaminergic neurons is manifested as
impaired function of the system, whereas additional
contributions of genetic, environmental, factors are
needed to reach the threshold for dopaminergic
neurodegeneration in PD [3, 4]. In healthy aging
selective accumulation of iron occurs in several
brain regions and different cell types, with iron
mostly bound to ferritin and neuromelanin. Iron
is involved in quite a few cellular processes in the
brain. Those include mitochondrial respiration,
synthesis of myelin, DNA and neurotransmitters,
oxygen transportation, and other components of
cellular metabolism. Dysregulation of iron me-
tabolism has been linked to the pathogenesis of
several neurodegenerative disorders, including PD,
and age-related accumulation of iron might be an
important factor that contributes to neurodegenera-
tive processes [5]. Iron has been shown to accu-
mulate in Substantia nigra pars compacta (SNpc)
in PD patients. Lees [6] studied micro-architecture
of SN in patients with parkinsonism as compared
with control cases of varying age. The lateral-
ventral tier of SNpc was identified as selectively
vulnerable to the loss of melanized dopaminergic
neurons in PD. In patients with PD SNpc was
identified as the site of iron accumulation, whereas
in controls SN pars reticulata is rich in iron [7—9].
Overlapping of regions detected by iron-sensitive
MRI and neuromelanin-sensitive MRI was shown
in SN of individuals with PD and healthy controls.
The lateral-ventral SNpc was identified as prone to
iron accumulation [10].

The clinical application of iron chelators has
a bright future in PD therapy [5]. To achieve a bet-
ter follow-up the earliest possible start of PD treat-
ment is proposed, when movement disorders are

not severe [11, 12]. A number of studies in animal
models have shown that lactoferrin (LF), a mul-
tifunctional iron-binding glycoprotein, provides
neuroprotection against DA neuronal impairment
by several mechanisms. Those are not limited to
the regulation of iron metabolism, but may involve
the inhibition of apoptosis or mitigation of oxida-
tive stress and neuroinflammation [5].

Links between pathogenesis of PD
and iron metabolism

The hypothesis of iron participation in the de-
generation of dopaminergic neurons is based on
the peculiarities of iron localization in the brain
of PD patients. DA, the crucial neurotransmitter
involved in PD, easily forms toxic metabolites.
Indeed, even in physiological conditions the oxi-
dation of DA by monoamine oxidase results in for-
mation of hydrogen peroxide. Interaction between
hydrogen peroxide and iron accumulated in do-
paminergic neurons is known as the Fenton re-
action producing hydroxyl radicals. These reactive
oxygen species provoke oxidative stress featuring
the destruction of lipids, proteins, nucleic acids
and various antioxidants [13, 14]. Direct oxida-
tive modification of ceruloplasmin with a drop of
its ferroxidase activity in cerebrospinal fluid of PD
patients is a vivid example of the causative link
between the iron deposition in the central nervous
system and the oxidative stress. [15]. Elevated level
of intracellular iron induced ferroptosis, the pro-
grammed cell death associated with accumulation
of lipid hydroperoxides produced in the presence
of Fe(II). Moreover, the iron-catalyzed oxidation
of DA formed 6-hydroxydopamine. Noteworthy,
the latter is used as a neurotoxin to model PD
in animals, since it induces iron release from fer-
ritin and the production of reactive oxygen spe-
cies [16, 17].

The pathognomonic sign of familial and sporadic
PD is the presence of Lewy bodies. Those contain
aggregates of alpha-synuclein, but also are stained
in the iron-sensitive histochemical reaction [18].
Alpha-synuclein is mostly contained in presynaptic
terminals and may be involved in the compartmen-
talization, storage, and recycling of neurotransmit-
ters [19, 20]. The high-affinity iron-binding sites
were identified in its structure: D121, N122, and
E123 [21]. Experiments with wild-type and mutant
form of alpha-synuclein (A30P, A53T, and E46K),
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which is specific for familial cases of PD, showed
that Fe(III) can induce fibrillization of both
wild-type and mutant forms of the protein [22].
Under physiological conditions only about 4% of
the soluble monomeric alpha-synuclein is phos-
phorylated, whereas the protein found in Lewy
bodies of PD patients is phosphorylated by more
than 90% [23]. The '"DPDNEA(pY)EMPSEEG'3?
phosphopeptide of alpha-synuclein, where Y resi-
due was replaced with phosphotyrosine (pY), pos-
sessed a marked selectivity for trivalent metal ions,
e.g. Fe(IIl), in comparison with the non-modified
peptide or the phosphoserine (pS) containing pep-
tide: '""DPDNEAYEMP(pS)EEG!3? [24, 25].

5’-untranslated region of mMRNA encoding
alpha-synuclein contains the steam-loop structure
motif similar to the iron-responsive element of
mRNA encoding H- and L-ferritin, ferroportin,
and mitochondrial aconitase [26]. In the absence of
iron, iron-regulatory proteins bind the iron-respon-
sive element at the ferritin mRNA and block ferri-
tin translation. In a cellular model with knockdown
of iron-regulatory protein 1, which corresponds to
the situation when iron-responsive element do not
sense iron, the level of alpha-synuclein mRNA was
up-regulated [27]. Depletion of intracellular iron
by desferal decreased the level of alpha-synuclein
mRNA [28]. This impact of the iron concentration
on the regulation of alpha-synuclein synthesis does
not seem coincidental if to take into account that
both the recombinant protein and lysates of cells
with alpha-synuclein overexpression demonstrate
the activity of ferric reductase [29]. Overexpression
of alpha-synuclein alters the activity of tyrosine
hydroxylase, the key enzyme involved in DA syn-
thesis [30].

In 1997 Logroscino and colleagues reported
about an alteration of systemic iron metabolism
in PD patients [31]. Comparing the latter with
a corresponding age group of donors without clini-
cal evidence of PD or other major neurologic or
medical disorder revealed a significant decrease of
serum iron and the total iron binding capacity,
of transferrin and its iron saturation, and of fer-
ritin. Although there was no difference between
patients and controls in the overall dietary intake
of iron, dietary iron was not related to serum iron.
Moreover, there was also no difference between pa-
tients with PD who used Levodopa and those who
did not, implying that the observed differences in
circulating concentrations of iron and iron proteins
were not related to dissimilarites in the treatment
of PD [31]. The peculiarities of iron metabolism
in PD observed in that study were consistent both
with previous [32] and subsequent [33] investiga-
tions. Importantly, the level of plasma transferrin
positively correlated with the severity of tremor in
the tremor-dominant PD [34].

Links between lactoferrin and Parkinson disease

Studies of a connection between LF and the
pathogenesis of PD started with an observation of
the LF receptor higher content in mesencephalon
samples obtained by autopsy from 8 patients with
histologically confirmed PD in comparison with
13 individuals with no known history of psychiat-
ric or neurological disorders [35]. This observation
immediately placed a theoretical footing for a pos-
sible mechanism of pumping iron in the brain of
patients with PD [36]. This contradicted the notion
that the bacteriostatic activity of LF in exocrine
secretions and neutrophils is based on its capacity
to sequester iron, otherwise captured by microorga-
nisms. Indeed, LF binds iron about 300 times more
avidly than transferrin, but little is known about the
regulation of iron release from LF in physiological
conditions [37]. Further analysis of cellular distri-
bution in mesencephalon demonstrated the high
levels of LF in a large population of neurons in
SN of control cases [38]. Quantitative analysis also
demonstrated that patients with PD had higher LF
levels in the surviving neurons of SN as compared
with control cases. The authors conclude: “further
studies will be necessary to elucidate whether LF
acts as an iron scavenger and may represent a pro-
tective factor, or conversely, promotes excessive
iron accumulation leading to oxidative damage in
vulnerable neurons” [38]. In animals the acute ad-
ministration of 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) destroys neurons in SN, con-
taining most of the melanin, and causes a PD-like
syndrome [39]. Treatment of mice with MPTP
caused up-regulation of LF expression accompa-
nied by the synthesis of antioxidant enzymes such
as catalase and gamma-glutamyl cysteine synthe-
tase, which may provide the protection of brain
tissue from oxidative damage induced by the neu-
rotoxin [40, 41]. This hypothesis is confirmed by
an observation that LF plasma levels inversely cor-
related with PD severity even after treatment with
Levodopa, the DA agonist, and monoaminooxidase
inhibitors [42]. Noteworthy, the expression of gam-
ma-glutamyl cysteine synthetase is under control
of the nuclear factor erythroid 2-related factor 2,
the synthesis of which is induced by LF [43, 44].

Several groups reported about the capacity
of both iron-saturated and apo-forms of LF to
cross the blood-brain barrier in vitro and in vivo
[45—48]. These observations stimulated the studies
of LF beneficial effects, when LF-coated nanopar-
ticles were used to deliver drugs and constructions
designed for gene therapy in animals with models
of PD [49—53]. In parallel several studies demon-
strated the anti-anxiety and stress-protective acti-
vity of LF mediated via the opioid system and its
corticostatic activity [54—57].
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Effects of lactoferrin treatment on the pathogenesis of Parkinson disease modeled in animals: DA — dopamine

Early in this century a peptide hormone hep-
cidin was discovered. It regulates the iron efflux
from cells under inflammatory conditions and iron
overload [58, 59]. Iron metabolism is affected by
a number of pro-inflammatory cytokines on (e.g. tu-
mor necrosis factor-alpha, interleukin-1beta, inter-
leukin-6) mediated both by iron-regulatory proteins
and by hepcidin. This process includes the up-reg-
ulation of divalent metal transporter 1 and down-
regulation of ferroportin, the iron exporter [60].
Antianemic effect of LF is realized by decreasing
IL-6, abrogating the endotoxin-mediated degrada-
tion of ferroportin and increasing ceruloplasmin
ferroxidase activity [61—63]. Ferroxidase activity
of ceruloplasmin prevents the ubiquitin-mediated
degradation of ferroportin [64]. Participation of LF
in iron regulation is also mediated via stabilization
of iron-sensitive hypoxia-inducible factors-1 alpha
and -2 alpha [65, 66]. These transcription factors
up-regulate the synthesis of erythropoietin, which
demonstrated neuroprotective effects distinct from
its antianemic functions [67]. Indeed, intraperi-
toneal and nasal administration of LF to rodents
protects the animals against neurodegeneration,
including the rotenone-induced model of PD in
rats [42]. These results are confirmed by other
studies in which LF protected a culture of dopa-
minergic neurons from toxic effects of MPTP [67]
or mice [69, 70] against the MPTP-induced neu-
rodegeneration. In MPTP-treated mice the level
of divalent metal transporter 1 in striatum became
significantly higher in comparison with the control
group, but after LF treatment it was substantially
decreased [69]. The following scheme summarizes
the effects of LF treatment in PD animal models,
differing in the pathogenetic links affected.

The effects of LF and pro-inflammatory cy-
tokines are inverse, which is evidenced by the
negative correlation of LF and tumor necrosis
factor-alpha levels in cerebrospinal fluid of PD pa-

tients [71]. Two recent studies independently sug-
gested a potential usability of LF as non-invasive
marker of PD [72, 73]. In fact, the levels of LF
in saliva and tears of PD patients were higher than
those observed in the control group. Using salivary
and lacrimal LF as PD marker seems reasonable,
since both fluids are easily obtained as compared
with the blood samples and, which is more im-
portant, the levels of LF in these exocrine secre-
tions are much higher than the level of oligomeric
alpha-synuclein. The latter is widely used for PD
diagnosing, but its prevalence in red blood cells,
relatively low concentration in biological fluids and
contradictory data of meta-analysis diminish its im-
portance as a PD marker [74, 75].
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