The effect of aminoguanidine on acute lung injury induced by influenza A/H1N1/PDM09

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Acute lung injury is one of severe course of influenza infection with mortality up to 40% of patients, despite on etiological and pathogenetic therapy.

The aim of the article to study of the effects of aminoguanidine on correcting on acute lung injury induced by influenza virus A/California/7/09MA (mouse-adapted) (H1N1)pdm09, collection Smorodintsev Research Institute of Influenza.

Materials and methods. The study was performed on 95 outbred female mice. The mouse-adapted pandemic influenza virus A/California/7/09MA (H1N1)pdm09 was used for modeling viral infection at a dose of 1 LD50. The mortality was analysed. Levels of advanced glycation end-products (AGEs), proinflammatory cytokines in lung; saturation index and leukocytes marker parameters in blood; pathological and histological studies of lung were performed on 4 and 7 days post infection.

Results. Aminoguanidine led to 2-fold decrease in mortality in mice with virus-induced acute lung injury; significantly suppressed the growth of AGEs and proinflammatory cytokine levels in lung; reduced decrease of saturation index and hematological inflammatory markers; decreased level of inflammatory injury in lung tissue.

Conclusion. Aminoguanidine relieved virus-induced acute lung injury in mice. These AGEs inhibitor reduced the proinflammatory response and structural changes in respiratory tract epithelial cells induced by reactive carbonyl compounds on cell membrane.

Full Text

Restricted Access

About the authors

Andrei G. Aleksandrov

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: forphchemistry@gmail.com
ORCID iD: 0000-0001-9212-3865

a graduate student in the Laboratory of Drug Safety

Russian Federation, Saint Petersburg

Tatiana N. Savateeva-Lyubimova

Smorodintsev Research Institute of Influenza

Email: drugs_safety@mail.ru
ORCID iD: 0000-0003-4516-3308

Professor, MD, PhD in Medicine, leading researcher in the Laboratory of Drug Safety

Russian Federation, Saint Petersburg

Kira I. Stosman

Smorodintsev Research Institute of Influenza; Institute of Toxicology of Federal Medico-Biological Agency

Email: labtox6@rambler.ru
ORCID iD: 0000-0001-7959-2376

PhD in Biology, senior researcher in the Laboratory of Drug Safety

Russian Federation, Saint Petersburg

Arman A. Muzhikyan

Smorodintsev Research Institute of Influenza

Email: vetdiagnostics.spb@gmail.com
ORCID iD: 0000-0002-7093-0014

PhD in Veterinary Sciences, leading researcher in the Laboratory of Drug Safety

Russian Federation, Saint Petersburg

Konstantin V. Sivak

Smorodintsev Research Institute of Influenza

Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
SPIN-code: 7426-8322
Scopus Author ID: 35269910300

PhD in Biology, Head of the Department of Preclinical Trials

Russian Federation, Saint Petersburg

References

  1. Грипп у взрослых: методические рекомендации по диагностике, лечению, специфической и неспецифической профилактике / под ред. А.Г. Чучалина, Т.В. Сологуб. – СПб.: НП-Принт, 2014. – 192 с. [Gripp u vzroslykh: metodicheskie rekomendatsii podiagnostike, lecheniyu, spetsificheskoy i nespetsificheskoy profilaktike. Ed. by A.G. Chuchalin, T.V. Sologub. Saint Petersburg: NP-Print; 2014. 192 p. (In Russ.)]
  2. Деева Э.Г. Грипп на пороге пандемии: руководство для врачей. – М.: ГЭОТАР-Медиа, 2008. – 208 с. [Deeva EG. Gripp na poroge pandemii: rukovodstvo dlya vrachey. Moscow: GEOTAR-Media; 2008. 208 p. (In Russ.)]
  3. Зильбер А.П. Этюды критической медицины. Т. 2. Респираторная медицина. – Петрозаводск: ПетрГУ, 1996. – 488 с. [Zil’ber AP. Etyudy kriticheskoy meditsiny. Vol. 2. Respiratornaya meditsina. Petrozavodsk: Izdatel’stvo PetrGU; 1996. 488 p. (In Russ.)]
  4. Росстальная А.Л., Сабиров Д.М., Акалаев Р.Н., и др. Острое повреждение легких: спорные вопросы и нерешенные проблемы (обзор литературы) // Неотложная медицинская помощь. Журнал им. Н.В. Склифосовского. – 2016. – № 3. – С. 66–72. [Rosstalnaya AL, Sabirov DM, Akalaev RN, et al. Acute lung injury: issues and remaining challenges (a literature review). Neotlozhnaia meditsinskaia pomoshch’. 2016;(3):66-72. (In Russ.)]
  5. Мальцева Л.А., Мосенцев Н.Ф., Базиленко Д.В., и др. Респираторный дистресс-синдром: современные вопросы дефиниций, клинической картины, алгоритма диагностики // Медицина неотложных состояний. – 2016. – № 4. – С. 108–110. [Maltseva LO, Mosentsev MF, Bazylenko DV, et al. Respiratory distress syndrome: current issues of definitions, clinical presentation, diagnostic algorithm. Emergency medicine. 2016;(4):108-110. (In Russ.)]. https://doi.org/10.22141/2224-0586.4.75.2016.75827.
  6. Кассиль В.Л., Выжигина М.А., Свиридов С.В. Острый респираторный дистресс-синдром в современных представлениях об острой дыхательной недостаточности // Анестезиология и реаниматология. – 2013. – № 2. – С. 85–89. [Kassil VL, Vyzhigina MA, Sviridov SV. Ards in the modern concept of acute respiratory failure: a review. Anesteziol Reanimatol. 2013;(2):85-89. (In Russ.)]
  7. Donahoe M. Acute respiratory distress syndrome: A clinical review. Pulm Circ. 2011;1(2):192-211. https://doi.org/10.4103/2045-8932.83454.
  8. Goncalves-de-Albuquerque CF, Silva AR, Burth P, et al. Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediators Inflamm. 2015;2015:260465. https://doi.org/10.1155/2015/260465.
  9. Hagau N, Slavcovici A, Gonganau DN, et al. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. Crit Care. 2010;14(6):R203. https://doi.org/10.1186/cc9324.
  10. Beck-Schimmer B, Schimmer RC, Pasch T. Role of epithelial ICAM-1 in endotoxin-induced lung injury. In: Intensive Care Medicine. Ed. by J.L. Vincent. New York: Springer; 2003. P. 3-10. https://doi.org/10.1007/978-1-4757-5548-0_1.
  11. Черешнев В.А., Гусев Е.Ю. Иммунологические и патофизиологические механизмы системного воспаления // Медицинская иммунология. – 2012. – Т. 14. – № 1–2. – С. 9–20. [Chereshnev VA, Gusev EY. Immunological and pathophysiological mechanisms of systemic inflammation. Medical Immunology (Russia). 2012;14(1-2):9-20. (In Russ.)]. https://doi.org/10.15789/1563-0625-2012-1-2-9-20.
  12. Ridge KM, Olivera WG, Saldias F, et al. Alveolar type 1 cells express the alpha2 Na,K-ATPase, which contributes to lung liquid clearance. Circ Res. 2003;92(4):453-460. https://doi.org/10.1161/01.RES.0000059414.10360.F2.
  13. Gunther A, Siebert C, Schmidt R, et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med. 1996;153(1):176-184. https://doi.org/10.1164/ajrccm.153.1. 8542113.
  14. Баутин А.Е. Использование сочетания маневра мобилизации альвеол и эндобронхиального введения экзогенного сурфактанта в комплексной терапии острого респираторного дистресс-синдрома после кардиохирургических вмешательств // Вестник интенсивной терапии. – 2015. – № 1. – С. 3–11. [Bautin AE. Ispol’zovanie sochetaniya manevra mobilizatsii al’veol i endobronkhial’nogo vvedeniya ekzogennogo surfaktanta v kompleksnoy terapii ostrogo respiratornogo distress-sindroma posle kardiokhirurgicheskikh vmeshatel’stv. Vestnik intensivnoy terapii. 2015;(1):7-14. (In Russ.)]
  15. Kao KC, Hu HC, Chang CH, et al. Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Crit Care. 2015;19:228. https://doi.org/10.1186/s13054-015-0949-y.
  16. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349. https://doi.org/10.1056/NEJM200005043421806.
  17. Bernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 1987;317(25):1565-1570. https://doi.org/10.1056/NEJM198712173172504.
  18. Киселёв О.И. Химиопрепараты и химиотерапия гриппа. – СПб.: Росток, 2012. – 272 с. [Kiselev OI. Khimiopreparaty i khimioterapiya grippa. Saint Petersburg: Rostok; 2012. 272 p. (In Russ.)]
  19. Лазарева Н.Б., Журавлева М.В., Пантелеева Л.Р. Клинико-фармакологические подходы к современной противовирусной терапии гриппа // Медицинский совет. – 2018. – № 6. – С. 50–54. [Lazareva NB, Zhuravleva MV, Panteleeva LR. Clinical and pharmacological approaches to present-day influenza anti-viral therapy. Medical Council. 2018;6(50-54). (In Russ.)]. https://doi.org/10.21518/2079-701X-2018-6-50-54.
  20. Орлова Н.В. Грипп. Диагностика, стратегия выбора противовирусных препаратов // Медицинский совет. – 2017. – № 20. – С. 80–86. [Orlova NV. Influenza. diagnostics, strategy for selection of anti-virals. Medical Council. 2017;(20):80-86. (In Russ.)]. https://doi.org/10.21518/ 2079-701X-2017-20-80-86.
  21. Осидак Л.В., Дриневский В.П., Воронцов И.М., и др. Грипп у детей. Клинико-патологические особенности, основные принципы диагностики и терапии: методические рекомендации. – СПб., 2006. – 47 с. [Osidak LV, Drinevskiy VP, Vorontsov IM, et al. Gripp u detey. Kliniko-patologicheskie osobennosti, osnovnye printsipy diagnostiki i terapii. Metodicheskie rekomendatsii. Saint Petersburg; 2006. 47 p. (In Russ.)]
  22. Lobo SM, Watanabe ASA, Salomao MLM, et al. Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. J Clin Virol. 2019;116:62-68. https://doi.org/10.1016/j.jcv.2019.05.003.
  23. Jaber S, Conseil M, Coisel Y, et al. ARDS and influenza A (H1N1): patients’ characteristics and management in intensive care unit. A literature review. Ann Fr Anesth Reanim. 2010;29(2):117-125. https://doi.org/10.1016/j.annfar.2009. 12.026.
  24. Topfer L, Menk M, Weber-Carstens S, et al. Influenza A (H1N1) vs non-H1N1 ARDS: analysis of clinical course. J Crit Care. 2014;29(3):340-346. https://doi.org/10.1016/ j.jcrc.2013.12.013.
  25. Yuan S. Drugs to cure avian influenza infection – multiple ways to prevent cell death. Cell Death Dis. 2013;4:e835. https://doi.org/10.1038/cddis.2013.367.
  26. Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 2013;94(1):55-68. https://doi.org/10.1189/jlb.1012519.
  27. Saadat S, Beheshti F, Askari VR, et al. Aminoguanidine affects systemic and lung inflammation induced by lipopolysaccharide in rats. Respir Res. 2019;20(1):96. https://doi.org/10.1186/s12931-019-1054-6.
  28. Tsuji C, Shioya S, Hirota Y, et al. Increased production of nitrotyrosine in lung tissue of rats with radiation-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2000;278(4):L719-725. https://doi.org/10.1152/ajplung.2000.278.4.L719.
  29. Burleson FG, Chambers TM, Wiedbrauk DL. Virology: A laboratory manual. London: Academic press; 1992.
  30. Zarubaev VV, Garshinina AV, Kalinina NA, et al. Activity of ingavirin (6-[2-(1h-imidazol-4-yl)ethylamino]-5-oxo-hexanoic acid) against human respiratory viruses in in vivo experiments. Pharmaceuticals (Basel). 2011;4(12):1518-1534. https://doi.org/10.3390/ph4121518.
  31. Yu PH, Zuo DM. Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications. Diabetologia. 1997;40(11): 1243-1250. https://doi.org/10.1007/s001250050816.
  32. Ожередова Н.А., Веревкин М.Н., Светлакова Е.В. Общая вирусология: методические указания. – Ставрополь: АГРУС, 2013. – 50 с. [Ozheredova NA, Verevkin MN, Svetlakova EV. Obshchaya virusologiya: Metodicheskie ukazaniya. Stavropol’: AGRUS; 2013. 50 p. (In Russ.)]
  33. Jonxis JHP. The determination of oxygen saturation in small amounts of blood, by means of the Pulfrich step photometer. Acta Medica Scandinavica. 2009;115(5):425-428. https://doi.org/10.1111/j.0954-6820.1943.tb15858.x.
  34. Zheng K, Wu L, He Z, et al. Measurement of the total protein in serum by biuret method with uncertainty evaluation. Measurement. 2017;112:16-21. https://doi.org/10.1016/ j.measurement.2017.08.013.
  35. Yanagisawa K, Makita Z, Shiroshita K, et al. Specific fluorescence assay for advanced glycation end products in blood and urine of diabetic patients. Metabolism. 1998;47(11):1348-1353. https://doi.org/10.1016/s0026-0495(98)90303-1.
  36. Кассирский И.А. Клиническая гематология. – М.: Медицина, 1970. – 800 c. [Kassirskiy IA. Klinicheskaya gematologiya. Moscow: Meditsina; 1970. 800 p. (In Russ.)]
  37. Коржевский Д.Э. Основы гистологической техники. – СПб.: СпецЛит, 2010. – 95 с. [Korzhevskiy DE. Osnovy gistologicheskoy tekhniki. Saint Petersburg: SpetsLit; 2010. 95 p. (In Russ.)]
  38. Matute-Bello G, Downey G, Moore BB, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725-738. https://doi.org/10.1165/rcmb.2009-0210ST.
  39. Гржибовский А.М. Корреляционный анализ // Экология человека. – 2008. – № 9. – С. 50–60. [Grjibovski АM. Correlation analysis. Ecology, human. 2008;(9):50-60. (In Russ.)]
  40. Грицан А.И., Ярошецкий А.И., Власенко А.В., и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома. Клинические рекомендации ФАР // Анестезиология и реаниматология. – 2016. – Т. 61. – № 1. – С. 62–70. [Gritzan AI, Yaroshetzkiy AI, Vlasenko AV, et al. Diagnostics and intensive therapy of acute respiratory distress syndrome. FAR’s clinical guidelines. Anesteziol Reanimatol. 2016;61(1):62-70. (In Russ.)]. https://doi.org/10.18821/0201-7563-2016-61-1-62-70.
  41. Сметкин А.А., Киров М.Ю. Мониторинг венозной сатурации в анестезиологии и интенсивной терапии // Общая реаниматология. – 2008. – Т. 4. – № 4. – С. 86–90. [Smetkin AA, Kirov MY. Venous saturation monitoring in anesthesiology and intensive care. General Reanimatology. 2008;4(4):86-90. (In Russ.)]. https://doi.org/10.15360/1813-9779-2008-4-86.
  42. Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care. 2019;23(1):258. https://doi.org/10.1186/s13054-019-2539-x.
  43. Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 2014;14(1):57-69. https://doi.org/10.1016/s1473-3099(13)70286-x.
  44. Rawal G, Kumar R, Yadav S, Sujana R. H1N1 influenza induced acute respiratory distress syndrome rescued by extracorporeal membrane oxygenation: a case report. J Transl Int Med. 2017;5(3):182-185. https://doi.org/10.1515/jtim-2017-0018.
  45. Светлицкая О.И., Юдина О.А., Кашанский Р.В., Канус И.И. Морфологическая характеристика поражения внутренних органов при остром респираторном дистресс-синдроме вирусно-бактериальной этиологии // Вестник ВГМУ. – 2018. – Т. 17. – № 2. – С. 55–62. [Svetlitskaya OI, Yudina OA, Kashanski RV, Kanus II. The morphologic characteristic of the inner organs lesion in the acute respiratory distress syndrome of the viral and bacterial etiology. Vestnik VGMU. 2018;17(2):55-62. (In Russ.)]. https://doi.org/10.22263/2312-4156.2018.2.55.
  46. Чарторижская Н.Н., Сепп А.В., Пруткина Е.В. Патологическая анатомия изменений внутренних органов при синдроме острого повреждения легких на фоне гриппа A/H1N1 в Забайкальском крае // Кубанский научный медицинский вестник. – 2010. – № 8. – С. 192–196. [Chartorizhskaya NN, Sepp AV, Prutkina EV. Pathologic anatomy of the inner organs changes in the acute diffuse lung damage associated with flu A/H1N1 in Zabaikal Region. Kubanskii nauchnyi meditsinskii vestnik. 2010;(8):192-196. (In Russ.)]
  47. Traylor ZP, Aeffner F, Davis IC. Influenza A H1N1 induces declines in alveolar gas exchange in mice consistent with rapid post-infection progression from acute lung injury to ARDS. Influenza Other Respir Viruses. 2013;7(3):472-479. https://doi.org/10.1111/j.1750-2659.2012.00414.x.
  48. Ng HH, Narasaraju T, Phoon MC, et al. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Exp Mol Pathol. 2012;92(3):287-295. https://doi.org/10.1016/j.yexmp.2012.03.003.
  49. Zhang Y, Sun H, Fan L, et al. Acute respiratory distress syndrome induced by a swine 2009 H1N1 variant in mice. PLoS One. 2012;7(1):e29347. https://doi.org/10.1371/journal.pone.0029347.
  50. Lee SA, Lee SH, Kim JY, Lee WS. Effects of glycyrrhizin on lipopolysaccharide-induced acute lung injury in a mouse model. J Thorac Dis. 2019;11(4):1287-1302. https://doi.org/10.21037/jtd.2019.04.14.
  51. Menezes SL, Bozza PT, Neto HC, et al. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl Physiol (1985). 2005;98(5):1777-1783. https://doi.org/10.1152/japplphysiol.01182.2004.
  52. Лискина И.В., Моногарова Н.Е. Современная клинико-морфологическая классификация идиопатических интерстициальных пневмоний // Патология. – 2008. – Т. 5. – № 1. – С. 4–12. [Liskina IV, Monogarova NE. The modern clinical-morphological classification of idiopathic interstitial pneumonias. Pathologia. 2008;5(1):4-12. (In Russ.)]
  53. Пруткина Е.В., Сепп А.В., Цыбиков Н.Н., Исакова Н.В. Воспроизведение в эксперименте стадий развития респираторного дистресс-синдрома // Бюллетень экспериментальной биологии и медицины. – 2013. – Т. 155. – № 6. – С. 784–787. [Prutkina EV, Sepp AV, Tsybikov NN, Isakova NV. Experimental reproduction of stages of the respiratory distress syndrome. Biull Eksp Biol Med. 2013;155(6):784-787. (In Russ.)]
  54. Войтковская К.С., Черняев А.Л. Синдром острого повреждения легких: определение, патогенез, экспериментальные модели и роль мезенхимальных стволовых клеток при лечении животных // Вестник современной клинической медицины. – 2012. – Т. 5. – № 2. – С. 60–67. [Voytkovskaya KS, Chernyaev AL. Acute lung injury: the definition, pathogenesis, animal models and the role of mesenchymal stem cells in experimental treatment. Bulletin of contemporary clinical medicine. 2012;5(2):60-67. (In Russ.)]
  55. Basta G, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105(7):816-822. https://doi.org/10.1161/hc0702.104183.
  56. Балаболкин М.И. Роль гликирования белков, окислительного стресса в патогенезе сосудистых осложнений при сахарном диабете // Сахарный диабет. – 2002. – № 4. – C. 8–16. [Balabolkin MI. Rol’ glikirovaniya belkov, okislitel’nogo stressa v patogeneze sosudistykh oslozhneniy pri sakharnom diabete. Diabetes mellitus. 2002;(4):8-16. (In Russ.)]
  57. Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes. 2012;61(3):549-559. https://doi.org/10.2337/db11-1120.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kaplan-Meier survival curve. * р ≤ 0,05 compared to group 1; # р ≤ 0,05 compared to group 2. Group 1 — intact mice; group 2 — infected mice treated with phosphate-buffered saline; group 3 — infected mice treated with aminoguanidine

Download (73KB)
3. Fig. 2. Level of AGE in lung, estimated by fluorescence (AU/g). * р ≤ 0,05 compared to group1; # р ≤ 0,05 compared to group 2. Group 1 — intact mice, group 2 — infected mice treated with phosphate-buffered saline, group 3 — infected mice treated with aminoguanidine

Download (123KB)
4. Fig. 3. Dynamics of saturation index during the experiment (Mean ± SE, %). * р ≤ 0,05 compared to group1; # р ≤ 0,05 compared to group 2. Group 1 — intact mice, group 2 — infected mice treated with phosphate-buffered saline, group 3 — infected mice treated with aminoguanidine

Download (78KB)
5. Fig. 4. Proinflammatory cytokine level on 4th day post infection (Mean ± SE, pg/g). * р ≤ 0,05 compared to group 1; # р ≤ 0,05 compared to group 2. Group 1 — intact mice, group 2 — infected mice treated with phosphate-buffered saline, group 3 — infected mice treated with aminoguanidine

Download (111KB)
6. Fig. 5. Proinflammatory cytokine level on 7th day post infection (Mean±SE, pg/g). * р ≤ 0,05 compared to group 1; # р ≤ 0,05 compared to group 2. Group 1 — intact mice, group 2 — infected mice treated with phosphate-buffered saline, group 3 — infected mice treated with aminoguanidine

Download (108KB)
7. Fig. 6. Lung of mice during experiment. Hematoxylin-eosin stain. Magnification ×100. I — Lung of intact mouse; IIA and IIБ — Lung of infected mice treated with placebo on 4 (A) and 7 (Б) day post infection; IIIА и IIIБ — Lung of infected mice treated with aminoguanidine on 4 (A) and 7 (Б) day post infection. а — increased cellular infiltrate; b — thickening of the alveolar septum; c — vascular plethora of the lungs; d — the presence of atelectasis; e — “hepatization” pulmonary parenchyma; f — alveolar edema; g — the presence of red blood cells in the alveolar space

Download (1MB)

Copyright (c) 2020 Aleksandrov A.G., Savateeva-Lyubimova T.N., Stosman K.I., Muzhikyan A.A., Sivak K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies