Characteristics of the functional state of peripheral blood neutrophils in patients with luminal breast cancer
- Authors: Korobkin J.D., Adamanskaya E.А., Polshina N.I.1, Galkina S.V.1, Kadyrov T.I.1, Gorbunov N.P.2, Sokolov A.V.2,3, Zhukova L.G.4, Sveshnikova A.N.5
-
Affiliations:
- Loginov Moscow Clinical Scientific Center
- Institute of Experimental Medicine
- Saint Petersburg State University
- Loginov Moscow Clinical Research Center
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
- Section: Original research
- Published: 24.06.2025
- URL: https://journals.eco-vector.com/MAJ/article/view/641688
- DOI: https://doi.org/10.17816/MAJ641688
- ID: 641688
Cite item
Full Text
Abstract
Aim - To analyze the chemotactic activity of neutrophils and the tendency to NETosis in blood samples of patients with locally advanced luminal breast cancer (BC) undergoing treatment (neoadjuvant chemotherapy) at the Moscow Medical Research Center named after A.S. Loginov. Materials and Methods. The study was conducted on blood samples from six patients with stage III luminal B, HER 2-negative breast cancer before and two months later on antitumor therapy. Blood samples from healthy adult volunteers were used as a control. The work was performed using fluorescence microscopy methods for neutrophil chemotaxis with the growth of blood clots and the number of NETs by reaction with Hoechst 33042 and antibodies against myeloperoxidase (MPO) and neutrophil elastase (NE) in smears of leukocyte-rich blood plasma. Results. In patients with breast cancer, the level of NETosis was significantly increased (30±14% vs. 4.6±3.4% in healthy donors), while most patients on therapy had a decrease in the level (17±17%). Neutrophil movement velocities also increase in some patients (0.17±0.06 µm/s vs. 0.113±0.009 µm/s in healthy donors) and decrease during therapy (0.10±0.03 µm/s). At the same time, the number of neutrophils associated with blood clots decreases during therapy (25±18 vs. 61±23) even in patients with neutrocytosis. Conclusion. It was shown that in patients with breast cancer the rate of neutrophil chemotaxis deviates from the control; at the same time, their adhesion is reduced, and peripheral blood neutrophils are significantly more prone to NET formation than those from healthy donors.
Full Text

About the authors
Julia Jessica D. Korobkin
Email: juliajessika@gmail.com
Ekaterina Iva А. Adamanskaya
Email: ka.09@mail.ru
Natalya I. Polshina
Loginov Moscow Clinical Scientific Center
Email: npolshina@yandex.ru
ORCID iD: 0000-0001-5417-0425
oncologist
Russian Federation, MoscowSofia V. Galkina
Email: s_v_galkina@rambler.ru
Timur I. Kadyrov
Email: kadyrov.ti17@physics.msu.ru
Nikolay P. Gorbunov
Institute of Experimental Medicine
Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281
Research fellow of the Department of Molecular Genetics
Russian Federation, Saint-PetersburgAlexey V. Sokolov
Institute of Experimental Medicine; Saint Petersburg State University
Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395
Doctor of Biological Sciences, Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics, Professor of Chair of Fundamental Problems of Medicine and Medical Technology
Russian Federation, Saint-PetersburgLyudmila G. Zhukova
Loginov Moscow Clinical Research Center
Email: zhukova.lyudmila008@mail.ru
ORCID iD: 0000-0003-4848-6938
D. Sci. (Med.)
Russian Federation, MoscowAnastasia N. Sveshnikova
Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
Author for correspondence.
Email: a.sveshnikova@physics.msu.ru
Dr. Habil, Head of cell biology and translational medicine lab
References
- Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, Pujari V (2019) Inflammation and cancer. Ann Afr Med 18:121. https://doi.org/10.4103/aam.aam_56_18
- Doshi AS, Asrani KH (2022) Innate and adaptive immunity in cancer. In: Cancer Immunology and Immunotherapy. Elsevier, pp 19–61
- Wu M, Ma M, Tan Z, Zheng H, Liu X (2020) Neutrophil: A New Player in Metastatic Cancers. Front Immunol 11:565165. https://doi.org/10.3389/fimmu.2020.565165
- Arpinati L, Shaul ME, Kaisar-Iluz N, Mali S, Mahroum S, Fridlender ZG (2020) NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother 69:199–213. https://doi.org/10.1007/s00262-019-02474-x
- Galdiero MR, Bianchi P, Grizzi F, Di Caro G, Basso G, Ponzetta A, Bonavita E, Barbagallo M, Tartari S, Polentarutti N, Malesci A, Marone G, Roncalli M, Laghi L, Garlanda C, Mantovani A, Jaillon S (2016) Occurrence and significance of tumor‐associated neutrophils in patients with colorectal cancer. Intl Journal of Cancer 139:446–456. https://doi.org/10.1002/ijc.30076
- Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16:183–194. https://doi.org/10.1016/j.ccr.2009.06.017
- Schaider H, Oka M, Bogenrieder T, Nesbit M, Satyamoorthy K, Berking C, Matsushima K, Herlyn M (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL‐8. Intl Journal of Cancer 103:335–343. https://doi.org/10.1002/ijc.10775
- Musiani P, Allione A, Modica A, Lollini PL, Giovarelli M, Cavallo F, Belardelli F, Forni G, Modesti A (1996) Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab Invest 74:146–157
- Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E, Berlanga-Taylor AJ (2020) Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med 18:360. https://doi.org/10.1186/s12916-020-01817-1
- Taucher E, Taucher V, Fink-Neuboeck N, Lindenmann J, Smolle-Juettner F-M (2021) Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers 13:5972. https://doi.org/10.3390/cancers13235972
- Jin L, Kim HS, Shi J (2021) Neutrophil in the Pancreatic Tumor Microenvironment. Biomolecules 11:1170. https://doi.org/10.3390/biom11081170
- Margaroli C, Cardenas MA, Jansen CS, Moon Reyes A, Hosseinzadeh F, Hong G, Zhang Y, Kissick H, Tirouvanziam R, Master VA (2020) The immunosuppressive phenotype of tumor-infiltrating neutrophils is associated with obesity in kidney cancer patients. OncoImmunology 9:1747731. https://doi.org/10.1080/2162402X.2020.1747731
- Cerezo-Wallis D, Ballesteros I (2022) Neutrophils in cancer, a love-hate affair. FEBS J 289:3692–3703. https://doi.org/10.1111/febs.16022
- Shaul ME, Fridlender ZG (2018) Cancer-related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J 285:4316–4342. https://doi.org/10.1111/febs.14524
- Gungabeesoon J, Gort-Freitas NA, Kiss M, Bolli E, Messemaker M, Siwicki M, Hicham M, Bill R, Koch P, Cianciaruso C, Duval F, Pfirschke C, Mazzola M, Peters S, Homicsko K, Garris C, Weissleder R, Klein AM, Pittet MJ (2023) A neutrophil response linked to tumor control in immunotherapy. Cell 186:1448-1464.e20. https://doi.org/10.1016/j.cell.2023.02.032
- Sveshnikova AN, Adamanskaya EA, Panteleev MA (2024) Conditions for the implementation of the phenomenon of programmed death of neutrophils with the appearance of DNA extracellular traps during thrombus formation. Voprosy gematologii/onkologii i immunopatologii v pediatrii 23:211–218. https://doi.org/10.24287/1726-1708-2024-23-1-211-218
- Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18:134–147. https://doi.org/10.1038/nri.2017.105
- Sveshnikova AN, Adamanskaya EA, Korobkina Yu-DD, Panteleev MA (2024) Intracellular signaling involved in the programmed neutrophil cell death leading to the release of extracellular DNA traps in thrombus formation. Voprosy gematologii/onkologii i immunopatologii v pediatrii 23:222–230. https://doi.org/10.24287/1726-1708-2024-23-2-222-230
- Shahzad MH, Feng L, Su X, Brassard A, Dhoparee-Doomah I, Ferri LE, Spicer JD, Cools-Lartigue JJ (2022) Neutrophil Extracellular Traps in Cancer Therapy Resistance. Cancers 14:1359. https://doi.org/10.3390/cancers14051359
- Martins-Cardoso K, Almeida VH, Bagri KM, Rossi MID, Mermelstein CS, König S, Monteiro RQ (2020) Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithelial-Mesenchymal Transition. Cancers (Basel) 12:1542. https://doi.org/10.3390/cancers12061542
- Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR, Varricchi G (2022) Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines 10:431. https://doi.org/10.3390/biomedicines10020431
- Gao F, Feng Y, Hu X, Zhang X, Li T, Wang Y, Ge S, Wang C, Chi J, Tan X, Wang N (2023) Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. International Immunopharmacology 121:110540. https://doi.org/10.1016/j.intimp.2023.110540
- Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S (2021) Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front Immunol 12:785222. https://doi.org/10.3389/fimmu.2021.785222
- Cives M, Pelle’ E, Quaresmini D, Rizzo FM, Tucci M, Silvestris F (2019) The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology 109:83–99. https://doi.org/10.1159/000497355
- Kou M, Lu W, Zhu M, Qu K, Wang L, Yu Y (2023) Massively recruited sTLR9+ neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother 72:2671–2686. https://doi.org/10.1007/s00262-023-03451-1
- Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y (2019) The Role of Tumor-Associated Neutrophils in Colorectal Cancer. IJMS 20:529. https://doi.org/10.3390/ijms20030529
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
- Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LAG, Cronin KA (2014) US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status. JNCI: Journal of the National Cancer Institute 106:. https://doi.org/10.1093/jnci/dju055
- Soto-Perez-de-Celis E, Chavarri-Guerra Y, Leon-Rodriguez E, Gamboa-Dominguez A (2017) Tumor-Associated Neutrophils in Breast Cancer Subtypes. Asian Pac J Cancer Prev 18:2689–2694. https://doi.org/10.22034/APJCP.2017.18.10.2689
- Sheng Y, Peng W, Huang Y, Cheng L, Meng Y, Kwantwi LB, Yang J, Xu J, Xiao H, Kzhyshkowska J, Wu Q (2023) Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. Journal of Leukocyte Biology 113:383–399. https://doi.org/10.1093/jleuko/qiad004
- Morozova DS, Martyanov AA, Obydennyi SI, Korobkin J-JD, Sokolov AV, Shamova EV, Gorudko IV, Khoreva AL, Shcherbina A, Panteleev MA, Sveshnikova AN (2022) Ex vivo observation of granulocyte activity during thrombus formation. BMC Biology 20:32. https://doi.org/10.1186/s12915-022-01238-x
- Korobkin J-JD, Deordieva EA, Tesakov IP, Adamanskaya E-IA, Boldova AE, Boldyreva AA, Galkina SV, Lazutova DP, Martyanov AA, Pustovalov VA, Novichkova GA, Shcherbina A, Panteleev MA, Sveshnikova AN (2024) Dissecting thrombus-directed chemotaxis and random movement in neutrophil near-thrombus motion in flow chambers. BMC Biol 22:115. https://doi.org/10.1186/s12915-024-01912-2
- Adamanskaya EA, Yushkova EB, Fedorova DV, Sokolov AV, Podoplelova NA, Sveshnikova AN (2023) Method of observation of neutrophil DNA traps in blood samples of pediatric patients. In: Collection of abstracts of the xxiv Congress of the I. P. Pavlov Physiological Society. VVM Publishing House LLC (Saint Petersburg), Saint Petersburg [In Russ.]
- Sokolov AV, Ageeva KV, Kostevich V A, Berlov M N, Runova O L, Zakharova ET, Vasiliev V B (2010) Investigation of the interaction of ceruloplasmin with serprocidins. Biochemistry 75:1544-1552 [In Russ.]
- Sokolov AV, Acquasaliente L, Kostevich VA, Frasson R, Zakharova ET, Pontarollo G, Vasilyev VB, De Filippis V (2015) Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radical Biology and Medicine 86:279–294. https://doi.org/10.1016/j.freeradbiomed.2015.05.016
- Groblewska M, Mroczko B, Wereszczyńska-Siemiątkowska U, Myśliwiec P, Kędra B, Szmitkowski M (2007) Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. 45:30–34. https://doi.org/10.1515/CCLM.2007.025
- Schoergenhofer C, Schwameis M, Wohlfarth P, Brostjan C, Abrams ST, Toh C-H, Jilma B (2017) Granulocyte colony-stimulating factor (G-CSF) increases histone-complexed DNA plasma levels in healthy volunteers. Clin Exp Med 17:243–249. https://doi.org/10.1007/s10238-016-0413-6
- Xu Q, Zhao W, Yan M, Mei H (2022) Neutrophil reverse migration. Journal of Inflammation 19:22. https://doi.org/10.1186/s12950-022-00320-z
- Patel S, Fu S, Mastio J, Dominguez GA, Purohit A, Kossenkov A, Lin C, Alicea-Torres K, Sehgal M, Nefedova Y, Zhou J, Languino LR, Clendenin C, Vonderheide RH, Mulligan C, Nam B, Hockstein N, Masters G, Guarino M, Schug ZT, Altieri DC, Gabrilovich DI (2018) Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol 19:1236–1247. https://doi.org/10.1038/s41590-018-0229-5
- Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, Goldman RD, Wagner DD, Waterman CM (2020) NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proceedings of the National Academy of Sciences 117:7326–7337. https://doi.org/10.1073/pnas.1909546117
- Thålin C, Lundström S, Seignez C, Daleskog M, Lundström A, Henriksson P, Helleday T, Phillipson M, Wallén H, Demers M (2018) Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 13:e0191231. https://doi.org/10.1371/journal.pone.0191231
- Krishnan J, Hennen EM, Ao M, Kirabo A, Ahmad T, De La Visitación N, Patrick DM (2024) NETosis Drives Blood Pressure Elevation and Vascular Dysfunction in Hypertension. Circulation Research 134:1483–1494. https://doi.org/10.1161/CIRCRESAHA.123.323897
- Li J-H, Tong D-X, Wang Y, Gao L, Liu Y, Zhang X-H, Chen W-J, Chi J-Y, Liu N, Yang K, Wang S-P, Xu Y, Li Y, Yin X-H, Liu W-X (2021) Neutrophil extracellular traps exacerbate coagulation and endothelial damage in patients with essential hypertension and hyperhomocysteinemia. Thrombosis Research 197:36–43. https://doi.org/10.1016/j.thromres.2020.10.028
- Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N (2023) The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer 22:148. https://doi.org/10.1186/s12943-023-01843-6
- Tamura M, Hattori K, Nomura H, Oheda M, Kubota N, Imazeki I, Ono M, Ueyama Y, Nagata S, Shirafuji N, Asano S (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochemical and Biophysical Research Communications 142:454–460. https://doi.org/10.1016/0006-291X(87)90296-8
- Jun HS, Lee YM, Song KD, Mansfield BC, Chou JY (2011) G-CSF improves murine G6PC3-deficient neutrophil function by modulating apoptosis and energy homeostasis. Blood 117:3881–3892. https://doi.org/10.1182/blood-2010-08-302059
- Yang Y, Yang J, Li L, Shao Y, Liu L, Sun B (2024) Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours. BMC Cancer 24:1244. https://doi.org/10.1186/s12885-024-12993-1
- Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, Ariel A, Hovav A-H, Henke E, Fridlender ZG, Granot Z (2015) Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports 10:562–573. https://doi.org/10.1016/j.celrep.2014.12.039
- Koyama S, Takamizawa A, Sato E, Masubuchi T, Nagai S, Izumi T (2001) Cyclophosphamide stimulates lung fibroblasts to release neutrophil and monocyte chemoattractants. American Journal of Physiology-Lung Cellular and Molecular Physiology 280:L1203–L1211. https://doi.org/10.1152/ajplung.2001.280.6.L1203
- Palukuri NR, Yedla RP, Bala SC, Kuruva SP, Chennamaneni R, Konatam ML, Gundeti S (2020) Incidence of febrile neutropenia with commonly used chemotherapy regimen in localized breast cancer. South Asian J Cancer 09:04–06. https://doi.org/10.4103/sajc.sajc_439_18
- Katsifis GE (2002) Risk of myelotoxicity with intravenous cyclophosphamide in patients with systemic lupus erythematosus. Rheumatology 41:780–786. https://doi.org/10.1093/rheumatology/41.7.780
Supplementary files
