Characteristics of the functional state of peripheral blood neutrophils in patients with luminal breast cancer



Cite item

Full Text

Abstract

Aim - To analyze the chemotactic activity of neutrophils and the tendency to NETosis in blood samples of patients with locally advanced luminal breast cancer (BC) undergoing treatment (neoadjuvant chemotherapy) at the Moscow Medical Research Center named after A.S. Loginov. Materials and Methods. The study was conducted on blood samples from six patients with stage III luminal B, HER 2-negative breast cancer before and two months later on antitumor therapy. Blood samples from healthy adult volunteers were used as a control. The work was performed using fluorescence microscopy methods for neutrophil chemotaxis with the growth of blood clots and the number of NETs by reaction with Hoechst 33042 and antibodies against myeloperoxidase (MPO) and neutrophil elastase (NE) in smears of leukocyte-rich blood plasma. Results. In patients with breast cancer, the level of NETosis was significantly increased (30±14% vs. 4.6±3.4% in healthy donors), while most patients on therapy had a decrease in the level (17±17%). Neutrophil movement velocities also increase in some patients (0.17±0.06 µm/s vs. 0.113±0.009 µm/s in healthy donors) and decrease during therapy (0.10±0.03 µm/s). At the same time, the number of neutrophils associated with blood clots decreases during therapy (25±18 vs. 61±23) even in patients with neutrocytosis. Conclusion. It was shown that in patients with breast cancer the rate of neutrophil chemotaxis deviates from the control; at the same time, their adhesion is reduced, and peripheral blood neutrophils are significantly more prone to NET formation than those from healthy donors.

Full Text

Restricted Access

About the authors

Julia Jessica D. Korobkin

Email: juliajessika@gmail.com

Ekaterina Iva А. Adamanskaya

Email: ka.09@mail.ru

Natalya I. Polshina

Loginov Moscow Clinical Scientific Center

Email: npolshina@yandex.ru
ORCID iD: 0000-0001-5417-0425

oncologist

Russian Federation, Moscow

Sofia V. Galkina

Email: s_v_galkina@rambler.ru

Timur I. Kadyrov

Email: kadyrov.ti17@physics.msu.ru

Nikolay P. Gorbunov

Institute of Experimental Medicine

Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281

Research fellow of the Department of Molecular Genetics

Russian Federation, Saint-Petersburg

Alexey V. Sokolov

Institute of Experimental Medicine; Saint Petersburg State University

Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395

Doctor of Biological Sciences, Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics, Professor of Chair of Fundamental Problems of Medicine and Medical Technology

Russian Federation, Saint-Petersburg

Lyudmila G. Zhukova

Loginov Moscow Clinical Research Center

Email: zhukova.lyudmila008@mail.ru
ORCID iD: 0000-0003-4848-6938

D. Sci. (Med.)

Russian Federation, Moscow

Anastasia N. Sveshnikova

Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia

Author for correspondence.
Email: a.sveshnikova@physics.msu.ru

Dr. Habil, Head of cell biology and translational medicine lab

References

  1. Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, Pujari V (2019) Inflammation and cancer. Ann Afr Med 18:121. https://doi.org/10.4103/aam.aam_56_18
  2. Doshi AS, Asrani KH (2022) Innate and adaptive immunity in cancer. In: Cancer Immunology and Immunotherapy. Elsevier, pp 19–61
  3. Wu M, Ma M, Tan Z, Zheng H, Liu X (2020) Neutrophil: A New Player in Metastatic Cancers. Front Immunol 11:565165. https://doi.org/10.3389/fimmu.2020.565165
  4. Arpinati L, Shaul ME, Kaisar-Iluz N, Mali S, Mahroum S, Fridlender ZG (2020) NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother 69:199–213. https://doi.org/10.1007/s00262-019-02474-x
  5. Galdiero MR, Bianchi P, Grizzi F, Di Caro G, Basso G, Ponzetta A, Bonavita E, Barbagallo M, Tartari S, Polentarutti N, Malesci A, Marone G, Roncalli M, Laghi L, Garlanda C, Mantovani A, Jaillon S (2016) Occurrence and significance of tumor‐associated neutrophils in patients with colorectal cancer. Intl Journal of Cancer 139:446–456. https://doi.org/10.1002/ijc.30076
  6. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16:183–194. https://doi.org/10.1016/j.ccr.2009.06.017
  7. Schaider H, Oka M, Bogenrieder T, Nesbit M, Satyamoorthy K, Berking C, Matsushima K, Herlyn M (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL‐8. Intl Journal of Cancer 103:335–343. https://doi.org/10.1002/ijc.10775
  8. Musiani P, Allione A, Modica A, Lollini PL, Giovarelli M, Cavallo F, Belardelli F, Forni G, Modesti A (1996) Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab Invest 74:146–157
  9. Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E, Berlanga-Taylor AJ (2020) Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med 18:360. https://doi.org/10.1186/s12916-020-01817-1
  10. Taucher E, Taucher V, Fink-Neuboeck N, Lindenmann J, Smolle-Juettner F-M (2021) Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers 13:5972. https://doi.org/10.3390/cancers13235972
  11. Jin L, Kim HS, Shi J (2021) Neutrophil in the Pancreatic Tumor Microenvironment. Biomolecules 11:1170. https://doi.org/10.3390/biom11081170
  12. Margaroli C, Cardenas MA, Jansen CS, Moon Reyes A, Hosseinzadeh F, Hong G, Zhang Y, Kissick H, Tirouvanziam R, Master VA (2020) The immunosuppressive phenotype of tumor-infiltrating neutrophils is associated with obesity in kidney cancer patients. OncoImmunology 9:1747731. https://doi.org/10.1080/2162402X.2020.1747731
  13. Cerezo-Wallis D, Ballesteros I (2022) Neutrophils in cancer, a love-hate affair. FEBS J 289:3692–3703. https://doi.org/10.1111/febs.16022
  14. Shaul ME, Fridlender ZG (2018) Cancer-related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J 285:4316–4342. https://doi.org/10.1111/febs.14524
  15. Gungabeesoon J, Gort-Freitas NA, Kiss M, Bolli E, Messemaker M, Siwicki M, Hicham M, Bill R, Koch P, Cianciaruso C, Duval F, Pfirschke C, Mazzola M, Peters S, Homicsko K, Garris C, Weissleder R, Klein AM, Pittet MJ (2023) A neutrophil response linked to tumor control in immunotherapy. Cell 186:1448-1464.e20. https://doi.org/10.1016/j.cell.2023.02.032
  16. Sveshnikova AN, Adamanskaya EA, Panteleev MA (2024) Conditions for the implementation of the phenomenon of programmed death of neutrophils with the appearance of DNA extracellular traps during thrombus formation. Voprosy gematologii/onkologii i immunopatologii v pediatrii 23:211–218. https://doi.org/10.24287/1726-1708-2024-23-1-211-218
  17. Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18:134–147. https://doi.org/10.1038/nri.2017.105
  18. Sveshnikova AN, Adamanskaya EA, Korobkina Yu-DD, Panteleev MA (2024) Intracellular signaling involved in the programmed neutrophil cell death leading to the release of extracellular DNA traps in thrombus formation. Voprosy gematologii/onkologii i immunopatologii v pediatrii 23:222–230. https://doi.org/10.24287/1726-1708-2024-23-2-222-230
  19. Shahzad MH, Feng L, Su X, Brassard A, Dhoparee-Doomah I, Ferri LE, Spicer JD, Cools-Lartigue JJ (2022) Neutrophil Extracellular Traps in Cancer Therapy Resistance. Cancers 14:1359. https://doi.org/10.3390/cancers14051359
  20. Martins-Cardoso K, Almeida VH, Bagri KM, Rossi MID, Mermelstein CS, König S, Monteiro RQ (2020) Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithelial-Mesenchymal Transition. Cancers (Basel) 12:1542. https://doi.org/10.3390/cancers12061542
  21. Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR, Varricchi G (2022) Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines 10:431. https://doi.org/10.3390/biomedicines10020431
  22. Gao F, Feng Y, Hu X, Zhang X, Li T, Wang Y, Ge S, Wang C, Chi J, Tan X, Wang N (2023) Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. International Immunopharmacology 121:110540. https://doi.org/10.1016/j.intimp.2023.110540
  23. Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S (2021) Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front Immunol 12:785222. https://doi.org/10.3389/fimmu.2021.785222
  24. Cives M, Pelle’ E, Quaresmini D, Rizzo FM, Tucci M, Silvestris F (2019) The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology 109:83–99. https://doi.org/10.1159/000497355
  25. Kou M, Lu W, Zhu M, Qu K, Wang L, Yu Y (2023) Massively recruited sTLR9+ neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother 72:2671–2686. https://doi.org/10.1007/s00262-023-03451-1
  26. Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y (2019) The Role of Tumor-Associated Neutrophils in Colorectal Cancer. IJMS 20:529. https://doi.org/10.3390/ijms20030529
  27. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
  28. Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LAG, Cronin KA (2014) US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status. JNCI: Journal of the National Cancer Institute 106:. https://doi.org/10.1093/jnci/dju055
  29. Soto-Perez-de-Celis E, Chavarri-Guerra Y, Leon-Rodriguez E, Gamboa-Dominguez A (2017) Tumor-Associated Neutrophils in Breast Cancer Subtypes. Asian Pac J Cancer Prev 18:2689–2694. https://doi.org/10.22034/APJCP.2017.18.10.2689
  30. Sheng Y, Peng W, Huang Y, Cheng L, Meng Y, Kwantwi LB, Yang J, Xu J, Xiao H, Kzhyshkowska J, Wu Q (2023) Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. Journal of Leukocyte Biology 113:383–399. https://doi.org/10.1093/jleuko/qiad004
  31. Morozova DS, Martyanov AA, Obydennyi SI, Korobkin J-JD, Sokolov AV, Shamova EV, Gorudko IV, Khoreva AL, Shcherbina A, Panteleev MA, Sveshnikova AN (2022) Ex vivo observation of granulocyte activity during thrombus formation. BMC Biology 20:32. https://doi.org/10.1186/s12915-022-01238-x
  32. Korobkin J-JD, Deordieva EA, Tesakov IP, Adamanskaya E-IA, Boldova AE, Boldyreva AA, Galkina SV, Lazutova DP, Martyanov AA, Pustovalov VA, Novichkova GA, Shcherbina A, Panteleev MA, Sveshnikova AN (2024) Dissecting thrombus-directed chemotaxis and random movement in neutrophil near-thrombus motion in flow chambers. BMC Biol 22:115. https://doi.org/10.1186/s12915-024-01912-2
  33. Adamanskaya EA, Yushkova EB, Fedorova DV, Sokolov AV, Podoplelova NA, Sveshnikova AN (2023) Method of observation of neutrophil DNA traps in blood samples of pediatric patients. In: Collection of abstracts of the xxiv Congress of the I. P. Pavlov Physiological Society. VVM Publishing House LLC (Saint Petersburg), Saint Petersburg [In Russ.]
  34. Sokolov AV, Ageeva KV, Kostevich V A, Berlov M N, Runova O L, Zakharova ET, Vasiliev V B (2010) Investigation of the interaction of ceruloplasmin with serprocidins. Biochemistry 75:1544-1552 [In Russ.]
  35. Sokolov AV, Acquasaliente L, Kostevich VA, Frasson R, Zakharova ET, Pontarollo G, Vasilyev VB, De Filippis V (2015) Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radical Biology and Medicine 86:279–294. https://doi.org/10.1016/j.freeradbiomed.2015.05.016
  36. Groblewska M, Mroczko B, Wereszczyńska-Siemiątkowska U, Myśliwiec P, Kędra B, Szmitkowski M (2007) Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. 45:30–34. https://doi.org/10.1515/CCLM.2007.025
  37. Schoergenhofer C, Schwameis M, Wohlfarth P, Brostjan C, Abrams ST, Toh C-H, Jilma B (2017) Granulocyte colony-stimulating factor (G-CSF) increases histone-complexed DNA plasma levels in healthy volunteers. Clin Exp Med 17:243–249. https://doi.org/10.1007/s10238-016-0413-6
  38. Xu Q, Zhao W, Yan M, Mei H (2022) Neutrophil reverse migration. Journal of Inflammation 19:22. https://doi.org/10.1186/s12950-022-00320-z
  39. Patel S, Fu S, Mastio J, Dominguez GA, Purohit A, Kossenkov A, Lin C, Alicea-Torres K, Sehgal M, Nefedova Y, Zhou J, Languino LR, Clendenin C, Vonderheide RH, Mulligan C, Nam B, Hockstein N, Masters G, Guarino M, Schug ZT, Altieri DC, Gabrilovich DI (2018) Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol 19:1236–1247. https://doi.org/10.1038/s41590-018-0229-5
  40. Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, Goldman RD, Wagner DD, Waterman CM (2020) NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proceedings of the National Academy of Sciences 117:7326–7337. https://doi.org/10.1073/pnas.1909546117
  41. Thålin C, Lundström S, Seignez C, Daleskog M, Lundström A, Henriksson P, Helleday T, Phillipson M, Wallén H, Demers M (2018) Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 13:e0191231. https://doi.org/10.1371/journal.pone.0191231
  42. Krishnan J, Hennen EM, Ao M, Kirabo A, Ahmad T, De La Visitación N, Patrick DM (2024) NETosis Drives Blood Pressure Elevation and Vascular Dysfunction in Hypertension. Circulation Research 134:1483–1494. https://doi.org/10.1161/CIRCRESAHA.123.323897
  43. Li J-H, Tong D-X, Wang Y, Gao L, Liu Y, Zhang X-H, Chen W-J, Chi J-Y, Liu N, Yang K, Wang S-P, Xu Y, Li Y, Yin X-H, Liu W-X (2021) Neutrophil extracellular traps exacerbate coagulation and endothelial damage in patients with essential hypertension and hyperhomocysteinemia. Thrombosis Research 197:36–43. https://doi.org/10.1016/j.thromres.2020.10.028
  44. Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N (2023) The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer 22:148. https://doi.org/10.1186/s12943-023-01843-6
  45. Tamura M, Hattori K, Nomura H, Oheda M, Kubota N, Imazeki I, Ono M, Ueyama Y, Nagata S, Shirafuji N, Asano S (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochemical and Biophysical Research Communications 142:454–460. https://doi.org/10.1016/0006-291X(87)90296-8
  46. Jun HS, Lee YM, Song KD, Mansfield BC, Chou JY (2011) G-CSF improves murine G6PC3-deficient neutrophil function by modulating apoptosis and energy homeostasis. Blood 117:3881–3892. https://doi.org/10.1182/blood-2010-08-302059
  47. Yang Y, Yang J, Li L, Shao Y, Liu L, Sun B (2024) Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours. BMC Cancer 24:1244. https://doi.org/10.1186/s12885-024-12993-1
  48. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, Ariel A, Hovav A-H, Henke E, Fridlender ZG, Granot Z (2015) Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports 10:562–573. https://doi.org/10.1016/j.celrep.2014.12.039
  49. Koyama S, Takamizawa A, Sato E, Masubuchi T, Nagai S, Izumi T (2001) Cyclophosphamide stimulates lung fibroblasts to release neutrophil and monocyte chemoattractants. American Journal of Physiology-Lung Cellular and Molecular Physiology 280:L1203–L1211. https://doi.org/10.1152/ajplung.2001.280.6.L1203
  50. Palukuri NR, Yedla RP, Bala SC, Kuruva SP, Chennamaneni R, Konatam ML, Gundeti S (2020) Incidence of febrile neutropenia with commonly used chemotherapy regimen in localized breast cancer. South Asian J Cancer 09:04–06. https://doi.org/10.4103/sajc.sajc_439_18
  51. Katsifis GE (2002) Risk of myelotoxicity with intravenous cyclophosphamide in patients with systemic lupus erythematosus. Rheumatology 41:780–786. https://doi.org/10.1093/rheumatology/41.7.780

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.