MARKERS OF HALOGENATIVE STRESS AND NETOSIS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS
- Authors: Ivanov V.A.1, Sokolov A.V.2,3,4, Gorbunov N.P.3, Mikhal'chik E.V.5, Basyreva L.Y.6, Galkina N.V6, Galkina A.P6, Khoroshilova Y.B.6, Rusakov T.A6, Gusev S.A.6, Panasenko O.M.7,8
-
Affiliations:
- Lopukhin federal research and clinical center of physical-chemical medicine of federal medical biological agency
- Federal Research and Clinical Center of Physical-Chemical Medicine
- Institute of Experimental Medicine
- Saint Petersburg State University
- ФНКЦ физико-химической медицины ФМБА России
- ФГБУ ФНКЦ ФХМ им. Ю.М. Лопухина ФМБА России
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
- Pirogov Russian National Research Medical University
- Section: Original research
- Published: 23.06.2025
- URL: https://journals.eco-vector.com/MAJ/article/view/642420
- DOI: https://doi.org/10.17816/MAJ642420
- ID: 642420
Cite item
Full Text
Abstract
Background. Leukocyte myeloperoxidase (MPO) catalyzes the formation of reactive halogen species, which, by oxidizing and chlorinating biomolecules, contribute to halogenative stress. MPO is also a key enzyme in neutrophil extracellular traps (NETs) formed during NETosis. There is evidence to suggest that under hyperglycemia in patients with type 2 diabetes mellitus (T2DM), halogenative stress and NETosis develop, which promote the progression of this disease and its complications.
Aim of the study. To evaluate the markers of halogenative stress (MPO, chlorinated albumin (HSA-Cl)) and NETosis (NETs) in the blood of T2DM patients.
Materials and Methods. The study included patients diagnosed with T2DM. MPO and HSA-Cl were determined in plasma by ELISA. NETs were counted in standardized blood smears (stained by Romanowsky) using a light microscope.
Results. MPO and HSA-Cl levels in the blood of T2DM patients were significantly increased compared to healthy subjects, which is a sign of halogenative stress. There was also a significant increase in the number of NETs in the blood of T2DM patients versus healthy subjects both in the absence and presence of the neutrophil activator phorbol-12-myristate-13-acetate, which indicates the activation of NETosis in T2DM.
Conclusion. The results obtained support the hypothesis that halogenative stress resulting from excessive increase in MPO blood concentration/activity accompanies the development of T2DM, contributing to the progression of this disease and its complications
Full Text

About the authors
Viktor A. Ivanov
Lopukhin federal research and clinical center of physical-chemical medicine of federal medical biological agency
Email: vanov.va@inbox.ru
ORCID iD: 0000-0003-4766-1386
Junior Research Associate of Laboratories of Physical and Chemical Research and Analysis Methods.
Russian FederationAlexey V. Sokolov
Federal Research and Clinical Center of Physical-Chemical Medicine; Institute of Experimental Medicine; Saint Petersburg State University
Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395
Dr. Sci. (Biology), Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics, Senior Researcher of Department of Biophysics, Professor of the Department of Fundamental Problems of Medicine and Medical Technology
Russian Federation, Moscow; Saint PetersburgNikolay P. Gorbunov
Institute of Experimental Medicine
Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281
Research fellow of the Department of Molecular Genetics
Russian Federation, Saint-PetersburgElena Vladimirovna Mikhal'chik
ФНКЦ физико-химической медицины ФМБА России
Email: lemik2007@yandex.ru
Liliya Yu Basyreva
ФГБУ ФНКЦ ФХМ им. Ю.М. Лопухина ФМБА России
Email: basyreva@mail.ru
ORCID iD: 0000-0002-5170-9824
PhD (Chemistry), Senior Researcher Laboratories of Physical and Chemical Research and Analysis Methods.
Russian FederationNatal’ya V Galkina
Email: Galkina@RCPCM.ORG
ORCID iD: 0009-0006-5800-8015
Anna P Galkina
Email: Buhubat@mail.ru
ORCID iD: 0009-0004-9076-4799
Yana B. Khoroshilova
Email: Khoroshilova@RCPCM.org
ORCID iD: 0009-0002-5595-2415
Tatiana A Rusakov
Email: Rusakova@RCPCM.org
ORCID iD: 0009-0006-9451-1291
Sergey A. Gusev
Email: ser_gus@mail.ru
ORCID iD: 0000-0003-0383-2649
Doctor of Medical Sciences, Chief Research Associate of Laboratories of Physical and Chemical Research and Analysis Methods
Oleg M. Panasenko
Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Pirogov Russian National Research Medical University
Author for correspondence.
Email: o-panas@mail.ru
ORCID iD: 0000-0001-5245-2285
SPIN-code: 3035-6808
Doctor of Sciences (Biology), Professor, Head of Department of Biophysics; Senior Researcher of Department of Medical Physics
Russian Federation, MoscowReferences
- . Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Vestn. Ross. Akad. Med. Nauk. 2010;(1):27–39 (In Russ.)
- Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow). 2013;53(13):195–244. doi: 10.1134/S0006297913130075
- Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The role of halogenative stress in atherogenic modification of low-density lipoproteins. Biochemistry (Moscow). 2020;85(Suppl. 1):S34–S55. doi: 10.1134/S0006297920140035
- Panasenko OM, Vladimirov YuA, Sergienko VI. Free radical lipid peroxidation induced by reactive halogen species. Biochemistry (Moscow). 2024;89(Sappl. 1):S148–S179. doi: 10.1134/S0006297924140098
- Meeuwisse-Pasterkamp SH, van der Klauw MM, Wolffenbuttel BH. Type 2 diabetes mellitus: prevention of macrovascular complications. Expert. Rev. Cardiovasc. Ther. 2008;6(3):323–341. doi: 10.1586/14779072.6.3.323
- John WG, Lamb EJ. The Maillard or browning reaction in diabetes. Eye (Lond). 1993;7:230–237. doi: 10.1038/eye.1993.55
- Singh К, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–146. doi: 10.1007/s001250051591
- Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
- Anderson MM, Hazen SL, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J. Clin. Invest. 1997;99(3):424–432. doi: 10.1172/JCI119176
- Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J. Clin. Invest. 1999;104(1):103–113. doi: 10.1172/JCI3042
- Piwowar A. Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property. Pol. Merkur. Lekarski. 2010;28(164):166–169.
- Klebanoff SJ. Myeloperoxidase: friend and foe. J. Leukocyte Biol. 2005;77(5):598–625. doi: 10.1189/jlb.1204697
- Thiam HR, Wong SL, Wagner DD, Waterman C.M. Cellular mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020;36(1):191–218. doi: 10.1146/annurev-cellbio-020520-111016
- Metzler KD. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. doi: 10.1182/blood-2010-06-290171
- Gorudko IV, Grigorieva DV, Shamova EV, et al. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic. Biol. Med. 2014;68:326–334. doi: 10.1016/j.freeradbiomed.2013.12.023
- Basyreva LYu, Shmeleva EV, Vakhrusheva TV, et al. Hypochlorous acid-modified serum albumin causes NETosis in whole blood ex vivo and isolated neutrophils. Bulletin of experimental biology and medicine. 2024;177(2):197–202. doi: 10.1007/s10517-024-06155-3
- Mikhalchik EV, Maximov DI, Ostrovsky EM, et al. Neutrophils as a source of factors increasing duration of the inflammatory phase of wound healing in patients with type 2 diabetes mellitus. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2019;13(1): 68-73. doi: 10.1134/S1990750819010098
- Giovenzana A, Carnovale D, Phillips B, Petrelli A, Giannoukakis N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab. Res. Rev. 2022;38(1):e3483. doi: 10.1002/dmrr.3483
- Basyreva LY, Vakhrusheva TV, Letkeman ZV, et al. Effect of vitamin D3 in combination with omega-3 polyunsaturated fatty acids on NETosis in type 2 diabetes mellitus patients. Oxid. Med. Cell. Longev. 2021;2021:8089696. doi: 10.1155/2021/8089696
- Ghoshal K, Das S, Aich K, et al. A novel sensor to estimate the prevalence of hypochlorous (HOCl) toxicity in individuals with type 2 diabetes and dyslipidemia. Clinica Chimica Acta. 2016;458:144–153. doi: 10.1016/j.cca.2016.05.006
- Rovira-Llopis S, Rocha M, Falcon R, et al. Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid. Redox Signal. 2013;19(13):1452-1458. doi: 10.1089/ars.2013.5307
- Wiersma JJ, Meuwese MC, van Miert JN, et al. Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med. Sci. Monit. 2008;14(8):CR406-410.
- Gorudko IV, Kostevich AV, Sokolov AV, et al. Increased myelopepoxidase activity is a risk factor for ishemic heart disease in patients with diabetes mellitus. Biochemistry (Moscow). Supp. Series B: Biomedical Chemistry. 2011;5:307-312. doi: 10.1134/S199075081103005X
- Moldoveanu E, Tanaseanu C, Tanaseanu S, et al. Plasma markers of endothelial dysfunction in type 2 diabetics. Eur. J. Intern. Med. 2006;17(1):38–42. doi: 10.1016/j.ejim.2005.09.015
- Gómez-García A, Rodríguez MR, Gómez-Alonso C, Ochoa DYR, Alvarez-Aguilar C. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab. J. 2015;39(1):59–65. doi: 10.4093/dmj.2015.39.1.59
- Sato N, Shimizu H, Suwa K, et al. MPO activity and generation of active O2 species in leukocytes from poorly controlled diabetic patients. Diabetes Care. 1992;15(8):1050–1052. doi: 10.2337/diacare.15.8.1050
- Uchimura K, Nagasaka A, Hayashi R, et al. Changes in superoxide dismutase activities and concentrations and myeloperoxidase activities in leukocytes from patients with diabetes mellitus. J. Diabetes Complications. 1999;13(5-6):264–270. doi: 10.1016/s1056-8727(99)00053-7
- de Souza Ferreira C, Araújo TH, Ângelo ML, et al. Neutrophil dysfunction induced by hyperglycemia: modulation of myeloperoxidase activity. Cell Biochem. Funct. 2012;30(7):604–610. doi: 10.1002/cbf.2840
- Sokolov AV, Kostevich VA, Gorbunov NP, et al. A link between active myeloperoxidase and chlorinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medical Immunology (Russia). 2018;(20):699-710. doi: 10.15789/1563-0625-2018-5-699-710 (In Russ.)
- Lutsenko VE, Grigorieva DV, Gorudko IV, et al. Celestine blue B as a sensor for hypochlorous acid and HOCl-modified proteins registration. Medical Academic Journal. 2019;19(2):63-71. doi: 10.17816/MAJ19263-71 (In Russ.)
- Churashova IA, Sokolov AV, Kostevich VA, et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease. Medical Academic Journal. 2021;21(2):75-86. doi: 10.17816/MAJ71486 (In Russ.)
- Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380-385. doi: 10.1016/s0076-6879(94)33044-1
- Gavrilova AR, Khmara NF. Determination of glutathione peroxidase activity in erythrocytes in saturated concentrations of the substrate. Lab Delo. 1986;(12):721-724 (In Russ.)
- Karpishchenko AI. Meditsinskoye laboratornye tekhnologii (v 2-kh tomakh). Pod redaktsiyey Karpishchenko AI. Saint-Petersburg: Intermedika. 1999; 2:23-24 (In Russ).
- Samygina VR, Sokolov AV, Bourenkov G, et al. Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One. 2013;8(7):e67145. doi: 10.1371/journal.pone.0067145
- Panasenko OM, Chekanov AV, Vlasova II, et al. Influence of ceruloplasmin and lactoferrin on the chlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence. Biophysics. 2008;53(4):268-272. doi: 10.1134/S0006350908040052
- Sokolov AV, Ageeva KV, Pulina MO, et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic. Res. 2008;42(11-12):221-227. doi: 10.1080/10715760802566574
- Akkuş I, Kalak S, Vural H., et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin. Chim. Acta. 1996;244(2):221-227. doi: 10.1016/0009-8981(96)83566-2
- Ergin M, Aydin C, Yurt EF, Cakir B, Erel O. The variation of disulfides in the progression of type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes. 2020;128(2):77-81. doi: 10.1055/s-0044-100376
Supplementary files
