MARKERS OF HALOGENATIVE STRESS AND NETOSIS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS



Cite item

Full Text

Abstract

Background. Leukocyte myeloperoxidase (MPO) catalyzes the formation of reactive halogen species, which, by oxidizing and chlorinating biomolecules, contribute to halogenative stress. MPO is also a key enzyme in neutrophil extracellular traps (NETs) formed during NETosis. There is evidence to suggest that under hyperglycemia in patients with type 2 diabetes mellitus (T2DM), halogenative stress and NETosis develop, which promote the progression of this disease and its complications.

Aim of the study. To evaluate the markers of halogenative stress (MPO, chlorinated albumin (HSA-Cl)) and NETosis (NETs) in the blood of T2DM patients.

Materials and Methods. The study included patients diagnosed with T2DM. MPO and HSA-Cl were determined in plasma by ELISA. NETs were counted in standardized blood smears (stained by Romanowsky) using a light microscope. 

Results. MPO and HSA-Cl levels in the blood of T2DM patients were significantly increased compared to healthy subjects, which is a sign of halogenative stress. There was also a significant increase in the number of NETs in the blood of T2DM patients versus healthy subjects both in the absence and presence of the neutrophil activator phorbol-12-myristate-13-acetate, which indicates the activation of NETosis in T2DM.

Conclusion. The results obtained support the hypothesis that halogenative stress resulting from excessive increase in MPO blood concentration/activity accompanies the development of T2DM, contributing to the progression of this disease and its complications

Full Text

Restricted Access

About the authors

Viktor A. Ivanov

Lopukhin federal research and clinical center of physical-chemical medicine of federal medical biological agency

Email: vanov.va@inbox.ru
ORCID iD: 0000-0003-4766-1386

Junior Research Associate of Laboratories of Physical and Chemical Research and Analysis Methods.

Russian Federation

Alexey V. Sokolov

Federal Research and Clinical Center of Physical-Chemical Medicine; Institute of Experimental Medicine; Saint Petersburg State University

Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395

Dr. Sci. (Biology), Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics, Senior Researcher of Department of Biophysics, Professor of the Department of Fundamental Problems of Medicine and Medical Technology

Russian Federation, Moscow; Saint Petersburg

Nikolay P. Gorbunov

Institute of Experimental Medicine

Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281

Research fellow of the Department of Molecular Genetics

Russian Federation, Saint-Petersburg

Elena Vladimirovna Mikhal'chik

ФНКЦ физико-химической медицины ФМБА России

Email: lemik2007@yandex.ru

Liliya Yu Basyreva

ФГБУ ФНКЦ ФХМ им. Ю.М. Лопухина ФМБА России

Email: basyreva@mail.ru
ORCID iD: 0000-0002-5170-9824

PhD (Chemistry), Senior Researcher Laboratories of Physical and Chemical Research and Analysis Methods.

Russian Federation

Natal’ya V Galkina

Email: Galkina@RCPCM.ORG
ORCID iD: 0009-0006-5800-8015

Anna P Galkina

Email: Buhubat@mail.ru
ORCID iD: 0009-0004-9076-4799

Yana B. Khoroshilova

Email: Khoroshilova@RCPCM.org
ORCID iD: 0009-0002-5595-2415

Tatiana A Rusakov

Email: Rusakova@RCPCM.org
ORCID iD: 0009-0006-9451-1291

Sergey A. Gusev

Email: ser_gus@mail.ru
ORCID iD: 0000-0003-0383-2649

Doctor of Medical Sciences, Chief Research Associate of Laboratories of Physical and Chemical Research and Analysis Methods

Oleg M. Panasenko

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Pirogov Russian National Research Medical University

Author for correspondence.
Email: o-panas@mail.ru
ORCID iD: 0000-0001-5245-2285
SPIN-code: 3035-6808

Doctor of Sciences (Biology), Professor, Head of Department of Biophysics; Senior Researcher of Department of Medical Physics

Russian Federation, Moscow

References

  1. . Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Vestn. Ross. Akad. Med. Nauk. 2010;(1):27–39 (In Russ.)
  2. Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow). 2013;53(13):195–244. doi: 10.1134/S0006297913130075
  3. Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The role of halogenative stress in atherogenic modification of low-density lipoproteins. Biochemistry (Moscow). 2020;85(Suppl. 1):S34–S55. doi: 10.1134/S0006297920140035
  4. Panasenko OM, Vladimirov YuA, Sergienko VI. Free radical lipid peroxidation induced by reactive halogen species. Biochemistry (Moscow). 2024;89(Sappl. 1):S148–S179. doi: 10.1134/S0006297924140098
  5. Meeuwisse-Pasterkamp SH, van der Klauw MM, Wolffenbuttel BH. Type 2 diabetes mellitus: prevention of macrovascular complications. Expert. Rev. Cardiovasc. Ther. 2008;6(3):323–341. doi: 10.1586/14779072.6.3.323
  6. John WG, Lamb EJ. The Maillard or browning reaction in diabetes. Eye (Lond). 1993;7:230–237. doi: 10.1038/eye.1993.55
  7. Singh К, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–146. doi: 10.1007/s001250051591
  8. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
  9. Anderson MM, Hazen SL, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J. Clin. Invest. 1997;99(3):424–432. doi: 10.1172/JCI119176
  10. Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J. Clin. Invest. 1999;104(1):103–113. doi: 10.1172/JCI3042
  11. Piwowar A. Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property. Pol. Merkur. Lekarski. 2010;28(164):166–169.
  12. Klebanoff SJ. Myeloperoxidase: friend and foe. J. Leukocyte Biol. 2005;77(5):598–625. doi: 10.1189/jlb.1204697
  13. Thiam HR, Wong SL, Wagner DD, Waterman C.M. Cellular mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020;36(1):191–218. doi: 10.1146/annurev-cellbio-020520-111016
  14. Metzler KD. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. doi: 10.1182/blood-2010-06-290171
  15. Gorudko IV, Grigorieva DV, Shamova EV, et al. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic. Biol. Med. 2014;68:326–334. doi: 10.1016/j.freeradbiomed.2013.12.023
  16. Basyreva LYu, Shmeleva EV, Vakhrusheva TV, et al. Hypochlorous acid-modified serum albumin causes NETosis in whole blood ex vivo and isolated neutrophils. Bulletin of experimental biology and medicine. 2024;177(2):197–202. doi: 10.1007/s10517-024-06155-3
  17. Mikhalchik EV, Maximov DI, Ostrovsky EM, et al. Neutrophils as a source of factors increasing duration of the inflammatory phase of wound healing in patients with type 2 diabetes mellitus. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2019;13(1): 68-73. doi: 10.1134/S1990750819010098
  18. Giovenzana A, Carnovale D, Phillips B, Petrelli A, Giannoukakis N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab. Res. Rev. 2022;38(1):e3483. doi: 10.1002/dmrr.3483
  19. Basyreva LY, Vakhrusheva TV, Letkeman ZV, et al. Effect of vitamin D3 in combination with omega-3 polyunsaturated fatty acids on NETosis in type 2 diabetes mellitus patients. Oxid. Med. Cell. Longev. 2021;2021:8089696. doi: 10.1155/2021/8089696
  20. Ghoshal K, Das S, Aich K, et al. A novel sensor to estimate the prevalence of hypochlorous (HOCl) toxicity in individuals with type 2 diabetes and dyslipidemia. Clinica Chimica Acta. 2016;458:144–153. doi: 10.1016/j.cca.2016.05.006
  21. Rovira-Llopis S, Rocha M, Falcon R, et al. Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid. Redox Signal. 2013;19(13):1452-1458. doi: 10.1089/ars.2013.5307
  22. Wiersma JJ, Meuwese MC, van Miert JN, et al. Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med. Sci. Monit. 2008;14(8):CR406-410.
  23. Gorudko IV, Kostevich AV, Sokolov AV, et al. Increased myelopepoxidase activity is a risk factor for ishemic heart disease in patients with diabetes mellitus. Biochemistry (Moscow). Supp. Series B: Biomedical Chemistry. 2011;5:307-312. doi: 10.1134/S199075081103005X
  24. Moldoveanu E, Tanaseanu C, Tanaseanu S, et al. Plasma markers of endothelial dysfunction in type 2 diabetics. Eur. J. Intern. Med. 2006;17(1):38–42. doi: 10.1016/j.ejim.2005.09.015
  25. Gómez-García A, Rodríguez MR, Gómez-Alonso C, Ochoa DYR, Alvarez-Aguilar C. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab. J. 2015;39(1):59–65. doi: 10.4093/dmj.2015.39.1.59
  26. Sato N, Shimizu H, Suwa K, et al. MPO activity and generation of active O2 species in leukocytes from poorly controlled diabetic patients. Diabetes Care. 1992;15(8):1050–1052. doi: 10.2337/diacare.15.8.1050
  27. Uchimura K, Nagasaka A, Hayashi R, et al. Changes in superoxide dismutase activities and concentrations and myeloperoxidase activities in leukocytes from patients with diabetes mellitus. J. Diabetes Complications. 1999;13(5-6):264–270. doi: 10.1016/s1056-8727(99)00053-7
  28. de Souza Ferreira C, Araújo TH, Ângelo ML, et al. Neutrophil dysfunction induced by hyperglycemia: modulation of myeloperoxidase activity. Cell Biochem. Funct. 2012;30(7):604–610. doi: 10.1002/cbf.2840
  29. Sokolov AV, Kostevich VA, Gorbunov NP, et al. A link between active myeloperoxidase and chlorinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medical Immunology (Russia). 2018;(20):699-710. doi: 10.15789/1563-0625-2018-5-699-710 (In Russ.)
  30. Lutsenko VE, Grigorieva DV, Gorudko IV, et al. Celestine blue B as a sensor for hypochlorous acid and HOCl-modified proteins registration. Medical Academic Journal. 2019;19(2):63-71. doi: 10.17816/MAJ19263-71 (In Russ.)
  31. Churashova IA, Sokolov AV, Kostevich VA, et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease. Medical Academic Journal. 2021;21(2):75-86. doi: 10.17816/MAJ71486 (In Russ.)
  32. Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380-385. doi: 10.1016/s0076-6879(94)33044-1
  33. Gavrilova AR, Khmara NF. Determination of glutathione peroxidase activity in erythrocytes in saturated concentrations of the substrate. Lab Delo. 1986;(12):721-724 (In Russ.)
  34. Karpishchenko AI. Meditsinskoye laboratornye tekhnologii (v 2-kh tomakh). Pod redaktsiyey Karpishchenko AI. Saint-Petersburg: Intermedika. 1999; 2:23-24 (In Russ).
  35. Samygina VR, Sokolov AV, Bourenkov G, et al. Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One. 2013;8(7):e67145. doi: 10.1371/journal.pone.0067145
  36. Panasenko OM, Chekanov AV, Vlasova II, et al. Influence of ceruloplasmin and lactoferrin on the chlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence. Biophysics. 2008;53(4):268-272. doi: 10.1134/S0006350908040052
  37. Sokolov AV, Ageeva KV, Pulina MO, et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic. Res. 2008;42(11-12):221-227. doi: 10.1080/10715760802566574
  38. Akkuş I, Kalak S, Vural H., et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin. Chim. Acta. 1996;244(2):221-227. doi: 10.1016/0009-8981(96)83566-2
  39. Ergin M, Aydin C, Yurt EF, Cakir B, Erel O. The variation of disulfides in the progression of type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes. 2020;128(2):77-81. doi: 10.1055/s-0044-100376

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.