Factors Affecting Survival in a Radiation-Induced Lymphoma Model in Mice



Cite item

Full Text

Abstract

Relevance. Experimental models of total gamma irradiation at non-lethal doses are widely used to study the remote effects of radiation exposure, such as induced carcinogenesis and accelerated aging.

The aim of the study was to evaluate factors influencing lifespan and carcinogenesis parameters in mice exposed to 4-fold total gamma irradiation at a dose of 1.7 Gy weekly (total dose 6.8 Gy).

Methodology. Study was conducted in 111 male and 70 female CB6F2 mice aged 62.7±13.7 days at the beginning of radiation exposure. Body weight, time of death, and carcinogenesis parameters were assessed. In an additional group of males (n=21) irradiated on the 56-57th day of life, peripheral blood cellular composition was analyzed, and DNA comet assay was performed.

Results. Thymic lymphomas developed in 59% of males after 348.4±135.5 days and in 48% of females after 349.5±107.7 days; the average lifespan (LS) was 352.8±137.4 days in males and 349.3±115 days in females. The parameters of carcinogenesis did not depend on the age at which the first exposure was carried out. A positive relationship was found between LS and the age of the first irradiation (r=0.3020, p=0.0013 for males and r=0.3522; p<0.0001 for females), but not the initial body weight of the animals. Irradiation of mice aged 56-57 days at a dose of 1.7 Gy resulted in DNA damage marker (percentage of DNA in the comet tail) increase compared to the value before irradiation by 1.6 times after the 1st irradiation and 2.3 times after the 4th irradiation. The values of the granulocyte-lymphocyte index in the peripheral blood increased by 1.6 times after the first exposure and 2.26 times after the fourth. The values of the index obtained after the first irradiation have an inverse correlation with lifespan (r = -0.5201; p = 0.0157).

Conclusion. In the model of fractionated quadruple gamma radiation at a total dose of 6.8 Gy, two important factors associated with the lifespan were revealed: the age of the first session and the granulocyte-lymphocyte index in the peripheral blood after it. The body weight of animals at the time of the first irradiation, the level of DNA damage assessed by the DNA comet assay, and the development of lymphomas were not associated with the lifespan of animals in this model.

Full Text

Restricted Access

About the authors

Maria N. Yurova

N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russia

Email: yumarni@gmail.com
ORCID iD: 0000-0003-3589-5871
SPIN-code: 3497-5175

Cand.  Sci. (Bio.)

Russian Federation, 68 Leningradskaya street, Pesochny, 197758 Saint Petersburg

Alexander Leonidovich Semenov

N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health

Email: genesem7@gmail.com
ORCID iD: 0000-0002-5190-0629
SPIN-code: 4301-8679

junior research fellow of laboratory of cancer chemoprevention and oncopharmacology

Elena Ivanovna Fedoros

N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health

Author for correspondence.
Email: elenafedoros@gmail.com
ORCID iD: 0000-0002-2426-9843
SPIN-code: 3302-1384

Ivan Viktorovich Soloviev

N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health

Email: kolonner@yandex.ru
ORCID iD: 0009-0003-0826-2101

Irina Akopovna Tumanyan

N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health

Email: itumanyan@mail.ru
ORCID iD: 0000-0002-8926-1519
SPIN-code: 1165-4685

Igor Sergeevich Drachev

ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Министерства обороны Российской Федерации

Email: dr.ingwar@mail.ru
ORCID iD: 0000-0002-1334-211X
SPIN-code: 6159-7799

Elena Andreevna Yakunchikova

ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Министерства обороны Российской Федерации

Email: Wowmusorka@gmail.com
ORCID iD: 0000-0003-1263-744X
SPIN-code: 3557-8986

Vladimir Nikolaevich Anisimov

N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health

Email: aging@mail.ru
ORCID iD: 0000-0002-3683-861X
SPIN-code: 1760-9080

член-корр. РАН, д.м.н., профессор,

Заведующий научным отделом канцерогенеза и онкогеронтологии

References

  1. Kaplan HS. The Role of Radiation on Experimental Leukemogenesis. Natl Cancer Inst Monogr. 1964;14:207–20.
  2. Rivina L, Davoren M, Schiestl RH. Radiation-Induced Lung Cancers in Murine Models. Advances in Lung Cancer. 2014;03(02):38–44. https://doi.org/ 10.1016/B978-0-12-407703-4.00003-7
  3. Yakunchikova EA, Yurova MN, Drachev IS, Radetskaya EA, Altukhov K V., Semenov AL, et al. Model of Accelerated Aging in CB6F2 Mice Induced by Ionizing Radiation. Bull Exp Biol Med. 2024;177(3):356–61. https://doi.org/ 10.47056/0365-9615-2024-177-3-356-361
  4. Puebla-Osorio N, Zhu C. DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis. Immunol Res. 2008;41(2):103–22. https://doi.org/10.1007/S12026-008-8015-3
  5. Taylor JG, Gribben JG. Microenvironment abnormalities and lymphomagenesis: Immunological aspects. Semin Cancer Biol. 2015;34:36–45. https://doi.org/10.1016/J.SEMCANCER.2015.07.004
  6. Sado T, Cart JB, Lee CL. Mechanisms Underlying the Development of Murine T-Cell Lymphoblastic Lymphoma/Leukemia Induced by Total-Body Irradiation. Cancers. 2024;16(12):2224. https://doi.org/10.3390/CANCERS16122224
  7. Kaplan HS. Radiation-induced lymphoid tumors of mice. Acta Unio Int Contra Cancrum. 1952;7(5):849–59.
  8. Dange PS, Sarma HD, Pandey BN, Mishra KP. Radiation-induced incidence of thymic lymphoma in mice and its prevention by antioxidants. J Environ Pathol Toxicol Oncol 2007;26(4):273–9. https://doi.org/10.1615/jenvironpatholtoxicoloncol.v26.i4.40
  9. Sasaki S. Influence of the age of mice at exposure to radiation on life-shortening and carcinogenesis. J Radiat Res. 1991;32 Suppl 2:73–85. https://doi.org/10.1269/JRR.32.SUPPLEMENT2_73
  10. Turusov VS, Mohr U. Pathology of Tumours in Laboratory Animals, 2nd Edition, Volume 2: Tumours of the Mouse (IARC Scientific Publication No. 111). Т. 2. Lyon: IARC; 1990.
  11. Liu H, Tabuchi T, Takemura A, et al. The granulocyte/lymphocyte ratio as an independent predictor of tumour growth, metastasis and progression: Its clinical applications. Mol Med Rep.;1(5):699–704. https://doi.org/10.3892/MMR_00000016
  12. Gajdaj E.A., Dorofeeva A.A., Kryshen K.L., Gajdaj D.S. Methodological aspects of DNA-comet assay in vivo in pre-clinical research. Laboratory Animals for Science. 2020; 3. (in Russ) https://doi.org/10.29296/2618723X-2020-03-03
  13. Sutherland JS, Goldberg GL, Hammett M V., et al. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 2005;175(4):2741–53. https://doi.org/10.4049/JIMMUNOL.175.4.2741
  14. Baran-Gale J, Morgan MD, Maio S, et al. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. Elife 2020;9:1–71. https://doi.org/10.7554/ELIFE.56221
  15. Reichert W, Buselmaier W, Vogel F. Elimination of X-ray-induced chromosomal aberrations in the progeny of female mice. Mutat Res. 1984;139(2):87–94. https://doi.org/10.1016/0165-7992(84)90109-X16.
  16. Newcomb EW, Diamond LE, Sloan SR, et al. Radiation and chemical activation of ras oncogenes in different mouse strains. Environ Health Perspect. 1989;81:33–7. https://doi.org/10.1289/ehp.898133
  17. Amari NM, Meruelo D. Murine thymomas induced by fractionated-X-irradiation have specific T-cell receptor rearrangements and characteristics associated with day-15 to -16 fetal thymocytes. Mol Cell Biol. 1987;7(12):4159. https://doi.org/10.1128/MCB.7.12.4159
  18. Utsuyama M, Hirokawa K. Radiation-induced-thymic lymphoma occurs in young, but not in old mice. Exp Mol Pathol. 2003;74(3):319–25. https://doi.org/10.1016/S0014-4800(03)00026-1
  19. Fujimichi Y, Sasaki M, Yoshida K, Iwasaki T. Effects of irradiation on cumulative mortality in mice: shifting toward a younger age of death. J Radiat Res. 2023.;64(2):412–9. https://doi.org/ 10.1093/JRR/RRAD006
  20. Wang Y, Xu C, Du LQ, et al. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation. International Journal of Molecular Sciences. 2013;14(11):22449–61. https://doi.org/10.3390/ijms141122449
  21. Blakely WF, Sandgren DJ, Nagy V, et al. Further biodosimetry investigations using murine partial-body irradiation model. Radiat Prot Dosimetry. 2014;159(1–4):46–51. https://doi.org/10.1093/RPD/NCU127
  22. Thrall KD, Lovaglio J, Murphy MK, et al. A Dose-Dependent Hematological Evaluation of Whole-Body Gamma-Irradiation in the Göttingen Minipig. Health Phys. 2013;105(3):245–52. https://doi.org/10.1097/HP.0B013E31829253A1
  23. Boggs D, Patrene K, Steinberg H. Aging and hematopoiesis. VI. Neutrophilia and other leukocyte changes in aged mice. Exp Hematol. 1986 г.;(5):372–9. PMID: 3519265.
  24. Ishikawa Y, Kitaoka S, Kawano Y, et al. Repeated social defeat stress induces neutrophil mobilization in mice: maintenance after cessation of stress and strain-dependent difference in response. Br J Pharmacol. 2021;178(4):827–44. https://doi.org/10.1111/BPH.15203

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.