Morphological characteristics of neuroinflammation and gene expression of neurotrophic factors in the brain on the 30th day after traumatic brain injury and administration of the interleukin-1 receptor antagonist



Cite item

Full Text

Abstract

Relevance. Traumatic brain injury (TBI) causes not only primary brain damage but also secondary inflammation, which contributes to further neuronal injury and dysfunction. Microglial cells are key participants in neuroinflammation, and they can remain activated for extended periods of time following TBI. This study is the first to describe the effects of recombinant IL-1 receptor antagonist (rIL-1RA) on microglial cells and the expression of neurotrophic factors in the hypothalamus 30 days after TBI in rats.

Aim. To investigate the effect of rIL-1RA on the morphological characteristics of microglia in brain areas susceptible to injury and to evaluate the expression of genes of neurotrophic factors Bdnf, Ngf, Vegf, and the inflammation marker S100a12 in the hypothalamus, as a potential structure with secondary inflammation, on the 30th day after TBI.

Materials and Methods. A weight-drop model was used to induce diffuse brain injury. rIL-1RA was administered subcutaneously at a dose of 50 mg/kg, 1 hour after TBI, and then twice more over the following two days. Microglial activation was assessed using immunohistochemistry and morphometry. The expression of neurotrophic factors Bdnf, Ngf, Vegf, and the inflammation marker S100a12 was measured by quantitative real-time PCR.

Results. Thirty days after the injury, no significant changes in the expression of neurotrophic factors (Bdnf, Ngf) or the inflammation marker S100a12 were observed in the hypothalamus. However, a significant increase in Vegf expression was recorded in animals treated with rIL-1RA. Immunohistochemical analysis revealed that activated microglial cells persisted in certain brain regions, but their numbers were significantly reduced compared to the untreated TBI group.

Conclusions. rIL-1RA modulates inflammatory responses after TBI by reducing microglial activation and improving neurotrophic processes, which opens prospects for its use in treating TBI-related sequelae.

Full Text

Restricted Access

About the authors

Anastasiia S. Diatlova

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»

Author for correspondence.
Email: me@diatlova.ru
ORCID iD: 0000-0003-1904-0697

junior researcher

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12

Nataliia S. Novikova

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»

Email: novikiem@gmail.com
ORCID iD: 0000-0002-6089-6414

Candidate of Biological Sciences, Senior Researcher

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12

Tatyana A. Filatenkova

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»

Email: lero269@gmail.com
ORCID iD: 0000-0002-6911-7456
SPIN-code: 4198-3636

Research Fellow

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12

Sergey N. Shanin

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»

Email: shanins@yandex.ru
ORCID iD: 0000-0001-8829-6552

Candidate of Medical Sciences, Senior Researcher

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12

Elena E. Fomicheva

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»

Email: eefomicheva@rambler.ru

Candidate of Biological Sciences, Senior Researcher

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12

Evgeniia N. Petrunina

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»; Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University"

Email: zhqee.sci@gmail.com
ORCID iD: 0009-0001-1011-6774

лаборант-исследователь

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12; 199034, Saint Petersburg, Universitetskaya emb., 7–9

Yulia S. Parshina

Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University"

Email: ellefstaine@mail.ru
ORCID iD: 0009-0003-5072-420X
Russian Federation, 199034, Saint Petersburg, Universitetskaya emb., 7–9

Aleksandr M. Ishchenko

Saint-Petersburg Pasteur Institute

Email: amischenko1946@mail.ru
ORCID iD: 0000-0002-6661-6145

Candidate of Biological Sciences, Head of Laboratory

Russian Federation, 197101, St. Petersburg, st. Mira, 14

Natalia B. Serebryanaya

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine»; Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University"

Email: nbvma@mail.ru
ORCID iD: 0000-0002-2418-9368
SPIN-code: 2240-1277
ResearcherId: G-1663-2015

PhD, MD (Medicine), Professor, Head of the Laboratory of General Immunology, Department of Immunology, Leading Researcher, Department of General Pathology and Pathophysiology

Russian Federation, 197022, St. Petersburg, st. Academician Pavlova, 12; 199034, Saint Petersburg, Universitetskaya emb., 7–9

References

  1. Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci. 2017;9:208. Published 2017 Jun 28. doi: 10.3389/fnagi.2017.00208
  2. Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? Biology (Basel). 2023;12(8):1139. Published 2023 Aug 17. doi: 10.3390/biology12081139
  3. Hill CS, Coleman MP, Menon DK. Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci. 2016;39(5):311-324. doi: 10.1016/j.tins.2016.03.002
  4. Bramlett HM, Dietrich WD. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma. 2015;32(23):1834-1848. doi: 10.1089/neu.2014.3352
  5. Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci. 2019;13:528. Published 2019 Nov 27. doi: 10.3389/fncel.2019.00528
  6. Shi K, Zhang J, Dong JF, Shi FD. Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol. 2019;16(6):523-530. doi: 10.1038/s41423-019-0213-5
  7. Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38-49. doi: 10.1016/j.jneumeth.2016.06.018
  8. Lee SW, de Rivero Vaccari JP, Truettner JS, Dietrich WD, Keane RW. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J Neuroinflammation. 2019;16(1):27. Published 2019 Feb 8. doi: 10.1186/s12974-019-1423-6
  9. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374-383. doi: 10.1002/ana.22455
  10. DeKosky ST, Styren SD, O'Malley ME, et al. Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Ann Neurol. 1996;39(1):123-127. doi: 10.1002/ana.410390118
  11. Jones NC, Prior MJ, Burden-Teh E, Marsden CA, Morris PG, Murphy S. Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci. 2005;22(1):72-78. doi: 10.1111/j.1460-9568.2005.04221.x
  12. Fomicheva E.E., Shanin S.N., Filatenkova T.A. et al. Correction of behavioral disorders and state of microglia with a recombinant IL-1 receptor antagonist in experimental traumatic brain injury. Russian journal of physiology. 2022;108(10):1264–1278. (In Russ.) doi.org/10.31857/S0869813922100077
  13. Lindblad C, Rostami E, Helmy A. Interleukin-1 Receptor Antagonist as Therapy for Traumatic Brain Injury. Neurotherapeutics. 2023;20(6):1508-1528. doi: 10.1007/s13311-023-01421-0
  14. Razenkova VA, Kirik OV, Pavlova VS, Korzhevskii DE. Identification of microglia and macrophages using antibodies to various sequences of the Iba-1 protein. Bulletin of RSMU. 2024;(3):13–9. (In Russ.) doi.org/10.24075/vrgmu.2024.026
  15. Swanson LV. Brain maps: Structure of the rat brain. A laboratory guide with printed and electronic templates for data, models and schematics. 3rd ed. Amsterdam: Elsevier, 2004.
  16. Meijer B, Gearry RB, Day AS. The role of S100A12 as a systemic marker of inflammation. Int J Inflam. 2012;2012:907078. doi: 10.1155/2012/907078
  17. Filatenkova T., Shanin S., Fomicheva E. et al. Manifestations of neuroinflammation 30 days after experimental traumatic brain injury in rats. Patogenez (Pathogenesis). 2024; 22(1): 49-55. (In Russ.) doi.org/10.25557/2310-0435.2024.01.49-55.
  18. Mei L, Osakada T, Lin D. Hypothalamic control of innate social behaviors. Science. 2023;382(6669):399-404. doi: 10.1126/science.adh8489
  19. Acerini CL, Tasker RC. Traumatic brain injury induced hypothalamic-pituitary dysfunction: a paediatric perspective. Pituitary. 2007;10(4):373-380. doi: 10.1007/s11102-007-0052-8
  20. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Filatenkova T.A. Correction of dysfunctions of the nervous and immune systems in experimental traumatic brain injury with cytokines erythropoietin and interleukin 1 receptor antagonist. Science of St. Petersburg State University - 2020. Collection of materials of the All-Russian conference on natural sciences and humanities with international participation, December 24, 2020. - St. Petersburg: Skifia-print, 2021. - pp. 461-462 (In Russ.). https://dspace.spbu.ru/handle/11701/33275
  21. Rostami E, Krueger F, Plantman S, et al. Alteration in BDNF and its receptors, full-length and truncated TrkB and p75(NTR) following penetrating traumatic brain injury. Brain Res. 2014;1542:195-205. doi: 10.1016/j.brainres.2013.10.047
  22. Shen X, Li A, Zhang Y, et al. The effect of different intensities of treadmill exercise on cognitive function deficit following a severe controlled cortical impact in rats. Int J Mol Sci. 2013;14(11):21598-21612. Published 2013 Oct 31. doi: 10.3390/ijms141121598
  23. Mahoney ER, Dumitrescu L, Moore AM, et al. Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer's disease. Mol Psychiatry. 2021;26(3):888-896. doi: 10.1038/s41380-019-0458-5
  24. Forstreuter F, Lucius R, Mentlein R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol. 2002;132(1-2):93-98. doi: 10.1016/s0165-5728(02)00315-6
  25. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87(8):3336-3343. doi.org/10.1182/blood.V87.8.3336.bloodjournal8783336
  26. Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR. Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(5):1008-1016. doi: 10.1038/jcbfm.2009.271

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.