INFLUENCE OF LITHIUM ON THE FUNCTIONAL ACTIVITY OF DOPAMINERGIC BRAIN PATHWAYS



Cite item

Full Text

Abstract

Dopaminergic dysfunction plays a role in the pathogenesis of a number of diseases, in particular Parkinson's disease, attention deficit hyperactivity disorder, addictions, affective disorders, Alzheimer's disease. However, existing methods of therapy do not lead to complete correction of dopaminergic dysfunction and the pathologies in general. The search for new pharmacological agents makes us pay attention to lithium, which has a normotimic effect and is used in the treatment of bipolar disorder. According to the literature, the effect of lithium is fully or partially mediated by its influence on the function of the dopaminergic pathways of the brain, and the substance itself may be important in the complex therapy of diseases in the pathogenesis of which dysfunction of the dopaminergic pathways of the brain is detected. To conduct further research in this area, it is necessary to summarize the available information on the effects and mechanisms of influence of low doses of lithium on the function of the dopaminergic pathways of the brain, which is considered by the authors as the goal of this literature review.

Full Text

Restricted Access

About the authors

Valery N. Mukhin

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"

Author for correspondence.
Email: valery.mukhin@gmail.com
ORCID iD: 0000-0003-0999-6847
SPIN-code: 3655-9126
Scopus Author ID: 57204253686
ResearcherId: E-6735-2014

Senior scientific researcher, Pavlov Department of Physiology

Russian Federation, 197022, Saint-Petersburg, 12, Acad. Pavlov Street

Victor M. Klimenko

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"

Email: klimenko_victor@mail.ru
ORCID iD: 0000-0001-9701-4537
SPIN-code: 8709-5642
Scopus Author ID: 14066179000
ResearcherId: A-4703-2016

M.D., Dr.Med.Sc., Ph.D., Leading Researcher of Ivan P. Pavlov Department of Physiology

Russian Federation, 197022, Saint-Petersburg, 12, Acad. Pavlov Street

References

  1. Kryzhanovsky GN, Kucheryanu VG, Magaeva SV, Bocharov EV Mechanisms of dysregulation of motor behavior in Parkinson's disease. In: Ugrumov M.V. (ed) Neurodegenerative diseases: basic and applied aspects. Moskow: Nauka; 2010:179–189 (In Russ)
  2. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17(8):524-532. doi: 10.1038/nrn.2016.57
  3. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in Neurobiology. 2002;67(1):53-83. doi: 10.1016/S0301-0082(02)00011-4
  4. Šimić G, Babić Leko M, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101-138. doi: 10.1016/j.pneurobio.2016.04.001
  5. Hampel H, Lista S, Mango D, et al. Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. Journal of Alzheimer’s Disease. 2019;Preprint(Preprint):1-15. doi: 10.3233/JAD-190197
  6. Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003;24(9):441-443. doi: 10.1016/S0165-6147(03)00206-2
  7. Lazzara CA, Kim YH. Potential application of lithium in Parkinson’s and other neurodegenerative diseases. Front Neurosci. 2015;9. doi: 10.3389/fnins.2015.00403
  8. Matsunaga S, Kishi T, Annas P, Basun H, Hampel H, Iwata N. Lithium as a Treatment for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 2015;48(2):403-410. doi: 10.3233/JAD-150437
  9. Plotnikov EY, Silachev DN, Zorova LD, et al. Lithium salts -- simple but magic. Biochemistry (Mosc). 2014;79(8):740-749. doi: 10.1134/S0006297914080021
  10. Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder. Pharmacol Rev. 2013;65(1):105-142. doi: 10.1124/pr.111.005512
  11. Beaulieu JM, Sotnikova TD, Yao WD, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. PNAS. 2004;101(14):5099-5104. doi: 10.1073/pnas.0307921101
  12. Tzschentke TM. Review on CPP: measuring reward with the conditioned place preference (cpp) paradigm: update of the last decade. Addiction Biology. 2007;12(3-4):227-462. doi: 10.1111/j.1369-1600.2007.00070.x
  13. McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF. Encoding of Aversion by Dopamine and the Nucleus Accumbens. Front Neurosci. 2012;6. doi: 10.3389/fnins.2012.00137
  14. Mohamadian M, Fallah H, Ghofrani-Jahromi Z, Rahimi-Danesh M, Shokouhi Qare Saadlou MS, Vaseghi S. Mood and behavior regulation: interaction of lithium and dopaminergic system. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023;396(7):1339-1359. doi: 10.1007/s00210-023-02437-1
  15. Umberg EN, Pothos EN. Neurobiology of Aversive States. Physiol Behav. 2011;104(1):69-75. doi: 10.1016/j.physbeh.2011.04.045
  16. Bazyan AS, Segal OL. Synaptic and paracrine nonsynaptic systems of the mammalian brain. Neurochem J. 2009;3(2):77-86. doi: 10.1134/S1819712409020019
  17. Otero Losada ME, Rubio MC. Striatal dopamine and motor activity changes observed shortly after lithium administration. Naunyn Schmiedebergs Arch Pharmacol. 1985;330(3):169-174.
  18. Baptista T, Teneúd L, Contreras Q, Burguera JL, Burguera M, Hernández L. Effects of acute and chronic lithium treatment on amphetamine-induced dopamine increase in the nucleus accumbens and prefrontal cortex in rats as studied by microdialysis. J Neural Transm Gen Sect. 1993;94(2):75-89.
  19. Mukhin VN, Borovets IR, Sizov VV, Pavlov KI, Klimenko VM. β-Amyloid and Lithium Affect the Magnitude of Phasic Dopamine Release in the Shell of the Nucleus Accumbens. Neurosci Behav Physi. 2021;51(2):201-208. doi: 10.1007/s11055-021-01058-6
  20. Berggren U. Effects of chronic lithium treatment on brain monoamine metabolism and amphetamine-induced locomotor stimulation in rats. J Neural Transmission. 1985;64(3-4):239-250. doi: 10.1007/BF01256470
  21. Gambarana C, Ghiglieri O, Masi F, Scheggi S, Tagliamonte A, De Montis MG. The effects of long-term administration of rubidium or lithium on reactivity to stress and on dopamine output in the nucleus accumbens in rats. Brain Research. 1999;826(2):200-209. doi: 10.1016/S0006-8993(99)01286-X
  22. Ferrie L, H. Young A, McQuade R. Effect of lithium and lithium withdrawal on potassium-evoked dopamine release and tyrosine hydroxylase expression in the rat. Int J Neuropsychopharmacol. 2006;9(6):729-735. doi: 10.1017/S1461145705006243
  23. Ferrie L, Young AH, McQuade R. Effect of chronic lithium and withdrawal from chronic lithium on presynaptic dopamine function in the rat. J Psychopharmacol. 2005;19(3):229-234. doi: 10.1177/0269881105051525
  24. Fortin SM, Chartoff EH, Roitman MF. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors. Neuropsychopharmacology. 2016;41(3):906-915. doi: 10.1038/npp.2015.220
  25. Can A, Frost DO, Cachope R, Cheer JF, Gould TD. Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. J Neurochem. 2016;139(4):576-585. doi: 10.1111/jnc.13769
  26. Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5. doi: 10.3389/fnmol.2012.00014
  27. O’Brien WT, Klein PS. Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans. 2009;37(Pt 5):1133-1138. doi: 10.1042/BST0371133
  28. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;0:114-131. doi: 10.1016/j.pharmthera.2014.11.016
  29. Jacobs KM, Bhave SR, Ferraro DJ, et al. GSK-3
  30. Gao C, Hölscher C, Liu Y, Li L. GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev Neurosci. 2011;23(1):1-11. doi: 10.1515/rns.2011.061
  31. Golpich M, Amini E, Hemmati F, et al. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson’s disease. Pharmacological Research. 2015;97(Supplement C):16-26. doi: 10.1016/j.phrs.2015.03.010
  32. Xu CM, Wang J, Wu P, et al. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J Neurochem. 2011;118(1):126-139. doi: 10.1111/j.1471-4159.2011.07281.x
  33. Li YC, Gao WJ. GSK-3β Activity and Hyperdopamine-dependent Behaviors. Neurosci Biobehav Rev. 2011;35(3):645-654. doi: 10.1016/j.neubiorev.2010.08.001
  34. Miller JS, Barr JL, Harper LJ, Poole RL, Gould TJ, Unterwald EM. The GSK3 Signaling Pathway Is Activated by Cocaine and Is Critical for Cocaine Conditioned Reward in Mice. PLoS One. 2014;9(2). doi: 10.1371/journal.pone.0088026
  35. Shi X, Miller JS, Harper LJ, Poole RL, Gould TJ, Unterwald EM. Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology (Berl). 2014;231(16):3109-3118. doi: 10.1007/s00213-014-3491-8
  36. Wu P, Xue Y xue, Ding Z bo, Xue L fen, Xu C mei, Lu L. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. Journal of Neurochemistry. 2011;118(1):113-125. doi: 10.1111/j.1471-4159.2011.07277.x
  37. Wilkinson MB, Dias C, Magida J, et al. A Novel Role of the WNT-Dishevelled-GSK3β Signaling Cascade in the Mouse Nucleus Accumbens in a Social Defeat Model of Depression. J Neurosci. 2011;31(25):9084-9092. doi: 10.1523/JNEUROSCI.0039-11.2011
  38. Beaulieu JM, Gainetdinov RR, Caron MG. The Akt–GSK-3 signaling cascade in the actions of dopamine. Trends in Pharmacological Sciences. 2007;28(4):166-172. doi: 10.1016/j.tips.2007.02.006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.