Relief of microecological imbalances and barrier dysfunction of the intestinal mucosa in a therapeutic strategy for life-threatening conditions

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Arguments are given about the expediency of early enteral treatment in life-threatening conditions to improve the functions of the intestinal barrier structures, prevent the transformation of the symbiotic microbiome phenotype and translocation of its representatives with the formation or aggravation of a systemic inflammatory response. The expediency of including proteins and beta-glucans and phosphates in the composition of nutritional mixtures was determined. For the purpose of pharmacological support, the possibility of including iron skevingers, valproates as histone acetylase inhibitors, antioxidants, statins and infusion solutions enriched with hydrogen was considered. The implementation of the paradigm of early enteral nutrition will improve the prognosis of patients in intensive care units.

Full Text

Restricted Access

About the authors

Sergej V. Chepur

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Author for correspondence.
Email: gniiivm_2@mil.ru

Dr. Med. Sci., Professor and Chief

Russian Federation, Saint Petersburg

Nikolaj N. Pluzhnikov

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Email: gniiivm_2@mil.ru

Dr. Med. Sci., Professor, Chief Researcher

Russian Federation, Saint Petersburg

Oleg V. Chubar’

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Email: gniiivm_2@mil.ru

Dr. Med. Sci., Senior Researcher, Deputy Chief

Russian Federation, Saint Petersburg

Vasilij N. Cygan

Kirov Military Medical Academy

Email: tvn@mail.ru

Dr. Med. Sci., Professor, Head, Dept of Pathological Physiology

Russian Federation, Saint Petersburg

Larisa S. Bakulina

Burdenko Voronezh State Medical Academy

Email: gniivm_2@mil.ru

Dr. Med. Sci., Professor, Head, Dept of Otorhinolaryngology

Russian Federation, Voronezh

Sergej P. Sidorov

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Email: gniiivm_2@mil.ru

PhD, Head, Dept of Resorbtive Toxicology

Russian Federation, Saint Petersburg

Mihail V. Bazhenov

State Research Trial Institute of Military Medicine, Ministry of
Defence of Russia

Email: gniiivm_2@mil.ru

Hospital Chief, Scientific Clinical Centre

Russian Federation, Saint Petersburg

Aleksej V. Mosin

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Email: gniiivm_2@mil.ru

Head of Division of Anesthesiology and Reanimation, Scientific Clinical Centre

Russian Federation, Saint Petersburg

Mihail V. Vinogradov

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Email: gniiivm_2@mil.ru

Head of Surgery Division, Scientific Clinical Centre

Russian Federation, Saint Petersburg

Roman V. Semakin

State Research Trial Institute of Military Medicine, Ministry of Defence of Russia

Email: gniiivm_2@mil.ru

Senior Doctor, Surgery Division, Scientific Clinical Centre

Russian Federation, Saint Petersburg

References

  1. Патент РФ на изобретение № 2132681/ 10.07.1999. Акберова С.И., Тазулахова Э.Б., Мусаев П.И., Строева О.Г. Индуктор интерферона. [Patent RUS № 2132681/ 10.07.1999. Akberova SI, Tazulakhova EB, Musaev PI, Stroeva OG. Induktor interferona. (In Russ.)]
  2. Патент РФ на изобретение № 2557959/ 27.07.2015. Андрусина И.Н., Важничая Е.М., Самусенко Ю.В., и др. Средство для лечения перегрузки организма железом или гемохроматоза. [Patent RUS № 2557959/ 27.07.2015. Andrusina IN, Vazhnichaya EM, Samusenko YuV, et al. Sredstvo dlya lecheniya peregruzki organizma zhelezom ili gemokhromatoza. (In Russ.)]
  3. Ардатская М.Д. Пробиотики, пребиотики и метабиотики в коррекции микроэкологических нарушений кишечника // Медицинский совет. – 2015. – № 13. – С. 94-99. [Ardatskaya MD. Probiotics, prebiotics and metabiotics in the management of microecological bowel disorders. Meditsinskiy sovet. 2015;(13):94-99. (In Russ.)]
  4. Барановский А.Ю., Кондрашина Э.А. Дисбактериоз кишечника. – СПб.: Питер, 2007. – 240 с. [Baranovskiy AYu, Kondrashina EA. Disbakterioz kishechnika. Saint Petersburg: Piter; 2007. 240 p. (In Russ.)]
  5. medi.ru [интернет]. Васильев И.Т., Мумладзе Р.Б., Колесова О.Е., Якушин В.И. Клиническая эффективность мексидола при лечении острых хирургических заболеваний [доступ от 26.07.2020]. Доступно по ссылке https://medi.ru/info/3024/. [medi.ru/info [Internet]. Vasil’ev IT, Mumladze RB, Kolesova OE, Yakushin VI. Klinicheskaya effektivnost’ meksidola pri lechenii ostrykh khirurgicheskikh zabolevaniy [cited 26 Jul 2020]. Available from: https://medi.ru/info/3024/. (In Russ.)]
  6. Патент РФ на изобретение № 2062787/ 1996.06.27. Горская Е.М., Бондаренко В.М., Воробьев А.А., Буданова Е.В. Стимулятор роста лактобацилл, кишечных палочек, бифидобактерий. [Patent RUS № 2062787/ 1996.06.27. Gorskaya EM, Bondarenko VM, Vorob’ev AA, Budanova EV. Stimulyator rosta laktobatsill, kishechnykh palochek, bifidobakteriy. (In Russ.)]
  7. Патент РФ на изобретение № 2116788/ 10.08.1998. Давыдов О.В., Горецкая И.С., Равинская Л.А., Давыдова Г.С. Индуктор интерферона. [Patent RUS № 2116788/ 10.08.1998. Davydov OV, Goretskaya IS, Ravinskaya LA, Davydova GS. Induktor interferona. (In Russ.)]
  8. Ефремов В.В., Спиричев В.Б., Симакова Р.А. Витамины. В кн.: Большая медицинская энциклопедия, Том 4. – М.: Советская энциклопедия, 1976. – С. 270-275. [Efremov VV, Spirichev VB, Simakova RA. Vitaminy. In: Bol’shaya meditsinskaya entsiklopediya, Tom 4. Moscow: Sovetskaya entsiklopediya; 1976. p. 270-275. (In Russ.)]
  9. Золотов Н.Н., Смирнов Л.Д., Кузьмина В.И., и др. Производные 3-оксипиридина как ингибиторы протеолитических ферментов // Химико-фармацевтический журнал. – 1989. – Т. 23. – № 2. – С. 133–135. [Zolotov NN, Smirnov LD, Kuz’mina VI, et al. Proizvodnye 3-oksipiridina kak ingibitory proteoliticheskikh fermentov. Khimiko-farmatsevticheskii zhurnal. 1989;23(2):133-135. (In Russ.)]
  10. Патент РФ на изобретение № 2157686/ 20.11.2000. Колесова О.Е., Уханова Т.Ю. Антибактериальное средство. [Patent RUS № 2157686/ 20.11.2000. Kolesova OE, Ukhanova TYu. Antibakterial’noe sredstvo. (In Russ.)]
  11. Лейдерман И.Н. Современная концепция нутритивной поддержки при критических состояниях. 5 ключевых проблем // Интенсивная терапия. – 2005. – № 1. – С. 15–20. [Leyderman IN. Sovremennaya kontseptsiya nutritivnoy podderzhki pri kriticheskikh sostoyaniyakh. 5 klyuchevykh problem. Intensivnaya terapiya. 2005;(1):15-20. (In Russ.)]
  12. Патент РФ на изобретение № 2339389/ 27.11.2008. Лобзин Ю.В., Добрица В.П., Цыган В.Н., и др. Способ профилактики назофарингиального носительства патогенной микрофлоры. [Patent RUS № 2339389/ 27.11.2008. Lobzin YuV, Dobritsa VP, Tsygan VN, et al. Sposob profilaktiki nazofaringial’nogo nositel’stva patogennoy mikroflory. (In Russ.)]
  13. Машковский М.Д. Лекарственные средства. – М.: Новая Волна, 2005. – 1200 с. [Mashkovskiy MD. Lekarstvennye sredstva. Moscow: Novaya Volna; 2005. 1200 p. (In Russ.)]
  14. Микроэкология: фундаментальные и прикладные проблемы / под ред. Н.Н. Плужникова, Я.А. Накатиса, О.Г. Хурцилавы. – СПб.: СЗГМУ им. И.И. Мечникова, 2012. – 304 с. [Mikroekologiya: fundamental’nye i prikladnye problemy. Ed. by N.N. Pluzhnikov, Yа.A. Nakatis, O.G. Khurtsilava. Saint Petersburg: SZGMU im. I.I. Mechnikova; 2012. 304 p. (In Russ.)]
  15. Плужников Н.Н., Чепур С.В., Хурцилава О.Г., и др. Множественность биологических эффектов статинов и ее значение в уточнении патогенеза атеросклероза // Успехи современной биологии. – 2018. – Т. 138. – № 6. – С. 602–613. [Pluzhnikov NN, Chepur SV, Khurtsilava OG, et al. Multiplicity of biological statin effects and its value in clarifying the pathogenesis of atherosclerosis. Usp Sovrem Biol. 2018;138(6):602-613. (In Russ.)]
  16. Сепсис: пожар и бунт на тонущем в шторм корабле. Монография. Часть 3. Концепция патогенеза сепсиса и терапевтической стратегии профилактики/лечения септических состояний / под ред. Н.Н. Плужникова, С.В. Чепура, О.Г. Хурцилавы. – СПб.: СЗГМУ им. И.И. Мечникова, 2018. – 272 с. [Sepsis: pozhar i bunt na tonushchem v shtorm korable. Monografiya. Chast’ 3. Kontseptsiya patogeneza sepsisa i terapevticheskoy strategii profilaktiki/lecheniya septicheskikh sostoyaniy. Ed. by N.N. Pluzhnikov, S.V. Chepur, O.G. Khurtsilava. Saint Petersburg: SZGMU im. I.I. Mechnikova; 2018. 272 p. (In Russ.)]
  17. Смирнов О.А. Железо-регуляторный гормон печени гепцидин и его место в системе врожденного иммунитета // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. – 2010. – Т. 20. – № 5. – С. 10-15. [Smirnov OA. Zhelezo-regulyatornyy gormon pecheni geptsidin i ego mesto v sisteme vrozhdennogo immuniteta. Russian journal of gastroenterology, hepatology, coloproctology. 2010;20(5):10-15. (In Russ.)]
  18. Тимербулатов Ш.В., Тимербулатов В.М., Сагитов Р.Б. и др. Прогностическое значение критериев синдрома интраабдоминальной гипертензии в экстренной абдоминальной хирургии // Инфекции в хирургии. – 2010. – Т. 8. – № 4. – С. 44–46. [Timerbulatov ShV, Timerbulatov VM, Sagitov RB, et al. Prognosticheskoe znachenie kriteriev sindroma intraabdominal’noy gipertenzii v ekstrennoy abdominal’noy khirurgii. Infektsii v khirurgii. 2010;8(4):44-46. (In Russ.)]
  19. Ходас О.А. Этилметилгидроксипиридина сукцинат и морфолиний 3-метил-1,2,4-5-тиоацетат: влияние на протеолиз в сыворотке крови крыс // Фундаментальные исследования. – 2014. – № 5–6. – С. 1229–1232. [Khodas OA. Ethylmethylhydroxypyridine succinate and morpholine 3-methyl-1,2,4-triazolil-5-thioacetate influence on proteolysis in blood serum in rats. Fundamental’nye issledovaniya. 2014;(5-6):1229-1232. (In Russ.)]
  20. Чепур С.В., Плужников Н.Н., Сайганов С.А., и др. Гипотеза матричного синтеза апериодических полисахаридов // Успехи современной биологии. – 2019. – Т. 139. – № 6. – С. 583–593. [Chepur SV, Pluzhnikov NN, Sajganov SA, et al. The hypothesis of the aperiodic polysaccharides matrix synthesis. Usp Sovrem Biol. 2019;139(6):583-593. (In Russ.)]
  21. Чепур С.В., Плужников Н.Н., Хурцилава О.Г., и др. Биологические эффекты молекулярного водорода и возможности его применения в клинической практике // Успехи современной биологии. – 2017. – Т. 137. – № 3. – С. 311–318. [Chepur SV, Pluzhnikov NN, Khurtsilava OG, et al. Biological effects of molecular hydrogen and its application in clinical practice. Usp Sovrem Biol. 2017;137(3):311-318. (In Russ.)]
  22. Abeyrathne EO, Lee HY, Ahn DU. Egg white proteins and their potential use in food processing or as nutraceuticals and pharmaceutical agents: a review. Poultry Sci. 2013;92(12):3292-3299.
  23. Akrami K, Sweeney DA. The microbiome of the critically ill patient. Curr Opin Crit Care. 2018;24(1):49-54. https://doi.org/10.1097/MCC.0000000000000469.
  24. Altshuler AE, Kistler EB, Schmid-Schonbein GW. Autodigestion: Proteolytic Degradation and Multiple Organ Failure in Shock. Shock. 2016;45(5):483-489. https://doi.org/10.1097/SHK.0000000000000544.
  25. Altshuler AE, Lamadrid I, Li D, et al. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition. PLoS One. 2014;9(5): e96655. https://doi.org/10.1371/journal.pone.0096655.
  26. Alverdy JC. Ionic Modulation of Bacterial Virulence and Its Role in Surgical Infection. Surg Infect (Larchmt). 2018;19(8): 769-773. https://doi.org/10.1089/sur.2018.224.
  27. Alverdy JC, Krezalek MA. Collapse of the Microbiome, Emergence of the Pathobiome, and the Immunopathology of Sepsis. Crit Care Med. 2017;45(2):337-347. https://doi.org/10.1097/CCM.0000000000002172.
  28. Amrein K, Papinutti A, Mathew E, et al. Vitamin D and critical illness: what endocrinology can learn from intensive care and vice versa. Endocr Connect. 2018;7(12):R304-R315. https://doi.org/10.1530/EC-18-0184.
  29. Andersen CJ. Bioactive Egg Components and Inflammation. Nutrients. 2015;7(9):7889-7913. https://doi.org/10.3390/nu7095372.
  30. Assa A, Vong L, Pinnell LJ, et al. Vitamin D deficiency predisposes to adherent-invasive Escherichia coli-induced barrier dysfunction and experimental colonic injury. Inflamm Bowel Dis. 2015;21(2):297-306. https://doi.org/10.1097/MIB.0000000000000282.
  31. Assa A, Vong L, Pinnell LJ, et al. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis. 2014;210(8):1296-1305. https://doi.org/10.1093/infdis/jiu235.
  32. Babayigit H, Kucuk C, Sozuer E, et al. Protective effect of beta-glucan on lung injury after cecal ligation and puncture in rats. Intensive Care Med. 2005;31(6):865-870. https://doi.org/10.1007/s00134-005-2629-x.
  33. Bajwa SS, Gupta S. Controversies, principles and essentials of enteral and parenteral nutrition in critically ill-patients. Journal of Medical Nutrition and Nutraceuticals. 2013;2(2):77. https://doi.org/10.4103/2278-019x. 114731.
  34. Bakke D, Sun J. Ancient Nuclear Receptor VDR with New Functions: Microbiome and Inflammation. Inflamm Bowel Dis. 2018;24(6):1149-54. https://doi.org/10.1093/ibd/izy092.
  35. Bashir M, Prietl B, Tauschmann M, et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr. 2016;55(4):1479-1489. https://doi.org/10.1007/s00394-015-0966-2.
  36. Bedirli A, Kerem M, Pasaoglu H, et al. Beta-glucan attenuates inflammatory cytokine release and prevents acute lung injury in an experimental model of sepsis. Shock. 2007;27(4):397-401. https://doi.org/10.1097/01.shk.0000245030.24235.f1.
  37. Bereswill S, Munoz M, Fischer A, et al. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One. 2010;5(12): e15099. https://doi.org/10.1371/journal.pone.0015099.
  38. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org/10.1186/s12876-014-0189-7.
  39. Bonten MJ, Kullberg BJ, van Dalen R, et al. Selective digestive decontamination in patients in intensive care. The Dutch Working Group on Antibiotic Policy. J Antimicrob Chemother. 2000;46(3):351-362. https://doi.org/10.1093/jac/46.3.351.
  40. Brands R, Poelstra K, inventor; AM-Pharma BV, assignee. Alkaline phosphatase for treating an inflammatory disease of the gastro-intestinal tract. United States patent US8574683. 2009 Jan 08.
  41. Bron PA, Kleerebezem M, Brummer RJ, et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117(1):93-107. https://doi.org/10.1017/S0007114516004037.
  42. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790-801. https://doi.org/10.1038/nri3535.
  43. Campbell EL, MacManus CF, Kominsky DJ, et al. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proc Natl Acad Sci USA. 2010;107(32):14298-14303. https://doi.org/10.1073/pnas.0914730107.
  44. Cashman KD, Dowling KG, Skrabakova Z, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016;103(4):1033-1044. https://doi.org/10.3945/ajcn.115. 120873.
  45. Chang M, Alsaigh T, Kistler EB, Schmid-Schonbein GW. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS One. 2012;7(6): e40087. https://doi.org/10.1371/journal.pone.0040087.
  46. Chang M, Kistler EB, Schmid-Schonbein GW. Disruption of the mucosal barrier during gut ischemia allows entry of digestive enzymes into the intestinal wall. Shock. 2012;37(3):297-305. https://doi.org/10.1097/SHK.0b013e318240b59b.
  47. Chekabab SM, Harel J, Dozois CM. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence. 2014;5(8):786-793. https://doi.org/10.4161/viru.29307.
  48. Chen C, Wang P, Su Q, et al. Myosin light chain kinase mediates intestinal barrier disruption following burn injury. PLoS One. 2012;7(4): e34946. https://doi.org/10.1371/journal.pone.0034946.
  49. Chen S, Zhu J, Chen G, et al. 1,25-Dihydroxyvitamin D3 preserves intestinal epithelial barrier function from TNF-alpha induced injury via suppression of NF-kB p65 mediated MLCK-P-MLC signaling pathway. Biochem Biophys Res Commun. 2015;460(3):873-878. https://doi.org/10.1016/j.bbrc.2015.03.125.
  50. Chen W, Jiang H, Zhou ZY, et al. Is omega-3 fatty acids enriched nutrition support safe for critical ill patients? A systematic review and meta-analysis. Nutrients. 2014;6(6):2148-2164. https://doi.org/10.3390/nu6062148.
  51. Chiarelli A, Enzi G, Casadei A, et al. Very early nutrition supplementation in burned patients. Am J Clin Nutr. 1990;51(6):1035-1039. https://doi.org/10.1093/ajcn/51.6.1035.
  52. Chihara G. Recent progress in immunopharmacology and therapeutic effects of polysaccharides. Dev Biol Stand. 1992;77:191-197.
  53. Corda R, Biddau P, Corrias A, Puxeddu E. Conalbumin in the treatment of acute enteritis in the infant. Int J Tissue React. 1983;5(1):117-123.
  54. Costa RL, Moreira J, Lorenzo A, Lamas CC. Infectious complications following probiotic ingestion: a potentially underestimated problem? A systematic review of reports and case series. BMC Complement Altern Med. 2018;18(1):329. https://doi.org/10.1186/s12906-018-2394-3.
  55. Crooks NH, Snaith C, Webster D, et al. Clinical review: Probiotics in critical care. Crit Care. 2012;16(6):237. https://doi.org/10.1186/cc11382.
  56. D’Ettorre G, Douek D, Paiardini M, et al. Microbial translocation and infectious diseases: what is the link? Int J Microbiol. 2012;2012:356981. https://doi.org/10.1155/2012/356981.
  57. Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617-624. https://doi.org/10.1136/thoraxjnl-2014-206680.
  58. Datta P, Weis MT. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport. World J Gastroenterol. 2015;21(30):9055-9066. https://doi.org/10.3748/wjg.v21.i30.9055.
  59. Davison JM, Wischmeyer PE. Probiotic and synbiotic therapy in the critically ill: State of the art. Nutrition. 2019;59:29-36. https://doi.org/10.1016/j.nut.2018.07.017.
  60. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1-66. https://doi.org/10.1007/10_2008_097.
  61. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis. 2016;22(5):1137-1150. https://doi.org/10.1097/MIB.0000000000000750.
  62. Demehri FR, Barrett M, Ralls MW, et al. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front Cell Infect Microbiol. 2013;3:105. https://doi.org/10.3389/fcimb.2013.00105.
  63. Demehri FR, Barrett M, Teitelbaum DH. Changes to the Intestinal Microbiome With Parenteral Nutrition: Review of a Murine Model and Potential Clinical Implications. Nutr Clin Pract. 2015;30(6):798-806. https://doi.org/10.1177/0884533615609904.
  64. den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9): 2325-2340. https://doi.org/10.1194/jlr.R036012.
  65. Derde S, Vanhorebeek I, Guiza F, et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology. 2012; 153(5):2267-2276. https://doi.org/10.1210/en.2011-2068.
  66. Dermyshi E, Wang Y, Yan C, et al. The “Golden Age” of Probiotics: A Systematic Review and Meta-Analysis of Randomized and Observational Studies in Preterm Infants. Neonatology. 2017;112(1):9-23. https://doi.org/ 10.1159/000454668.
  67. Dickson RP. The microbiome and critical illness. Lancet Respir Med. 2016;4(1):59-72. https://doi.org/10.1016/S2213-2600(15)00427-0.
  68. Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113. https://doi.org/10.1038/nmicrobiol.2016.113.
  69. Reis AMD, Fruchtenicht AV, Loss SH, Moreira LF. Use of dietary fibers in enteral nutrition of critically ill patients: a systematic review. Rev Bras Ter Intensiva. 2018;30(3): 358-365. https://doi.org/10.5935/0103-507X.20180050.
  70. Du J, Chen Y, Shi Y, et al. 1,25-Dihydroxyvitamin D Protects Intestinal Epithelial Barrier by Regulating the Myosin Light Chain Kinase Signaling Pathway. Inflamm Bowel Dis. 2015;21(11):2495-2506. https://doi.org/10.1097/MIB.0000000000000526.
  71. El Khoury D, Cuda C, Luhovyy BL, Anderson GH. Beta glucan: health benefits in obesity and metabolic syndrome. J Nutr Metab. 2012;2012:851362. https://doi.org/10.1155/2012/851362.
  72. Elke G, Heyland DK. Enteral nutrition in critically ill septic patients-less or more? JPEN J Parenter Enteral Nutr. 2015;39(2): 140-142. https://doi.org/10.1177/0148607114532692.
  73. Elke G, Wang M, Weiler N, et al. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: secondary analysis of a large international nutrition database. Crit Care. 2014;18(1): R29. https://doi.org/10.1186/cc13720.
  74. Eswaran S, Muir J, Chey WD. Fiber and functional gastrointestinal disorders. Am J Gastroenterol. 2013;108(5): 718-727. https://doi.org/10.1038/ajg.2013.63.
  75. Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res. 2016;202(1): 225-234. https://doi.org/10.1016/j.jss.2015.12.008.
  76. Ferrari R, Callerio C, Podio G. Antiviral activity of lysozyme. Nature. 1959;183(4660):548. https://doi.org/ 10.1038/183548a0.
  77. Fine J, Frank H, Schweinburg F, et al. The bacterial factor in traumatic shock. Ann N Y Acad Sci. 1952;55(3):429-445. https://doi.org/10.1111/j.1749-6632.1952.tb26558.x.
  78. Fremont RD, Rice TW. Pros and cons of feeding the septic intensive care unit patient. Nutr Clin Pract. 2015;30(3): 344-350. https://doi.org/10.1177/0884533615578457.
  79. Fry DE, Pearlstein L, Fulton RL, Polk HC, Jr. Multiple system organ failure. The role of uncontrolled infection. Arch Surg. 1980;115(2):136-140. https://doi.org/10.1001/archsurg.1980.01380020006003.
  80. Gatt M. The role of the gut in sepsis. Surgery (Oxford). 2015;33(11):534-541. https://doi.org/10.1016/j.mpsur. 2015.08.004.
  81. Gatt M, Reddy BS, MacFie J. Review article: bacterial translocation in the critically ill — evidence and methods of prevention. Aliment Pharmacol Ther. 2007;25(7):741-757. https://doi.org/10.1111/j.1365-2036.2006.03174.x.
  82. Giansanti F, Leboffe L, Angelucci F, Antonini G. The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food. Nutrients. 2015;7(11): 9105-9115. https://doi.org/10.3390/nu7115453.
  83. Giansanti F, Rossi P, Massucci MT, et al. Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activities of lactoferrin. Biochem Cell Biol. 2002;80(1):125-130. https://doi.org/10.1139/o01-208.
  84. Giraldi G, Fioravanti A, De Luca d’Alessandro E, et al. Investigation of the effects of vitamin D and calcium on intestinal motility: In vitro tests and implications for clinical treatment. Acta Pharm. 2015;65(3):343-349. https://doi.org/10.1515/acph-2015-0023.
  85. Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Med Hypotheses. 2016;94:103-107. https://doi.org/10.1016/j.mehy.2016.07.007.
  86. Gunville CF, Mourani PM, Ginde AA. The role of vitamin D in prevention and treatment of infection. Inflamm Allergy Drug Targets. 2013;12(4):239-245. https://doi.org/10.2174/18715281113129990046.
  87. Nakagawa H, Tsunooka N, Yamamoto Y, et al. Pitavastatin prevents intestinal ischemia/reperfusion-induced bacterial translocation and lung injury in atherosclerotic rats with hypoadiponectinemia. Surgery. 2009;145(5):542-549. https://doi.org/10.1016/j.surg.2009.01.002.
  88. Hamarneh SR, Mohamed MM, Economopoulos KP, et al. A novel approach to maintain gut mucosal integrity using an oral enzyme supplement. Ann Surg. 2014;260(4): 706-714;discussion 714-705. https://doi.org/10.1097/SLA.0000000000000916.
  89. He L, Liu T, Shi Y, et al. Gut Epithelial Vitamin D Receptor Regulates Microbiota-Dependent Mucosal Inflammation by Suppressing Intestinal Epithelial Cell Apoptosis. Endocrinology. 2018;159(2):967-979. https://doi.org/10.1210/en.2017-00748.
  90. He X, McLean JS, Guo L, et al. The social structure of microbial community involved in colonization resistance. ISME J. 2014;8(3):564-574. https://doi.org/10.1038/ismej.2013.172.
  91. Heyland DK. Should We PERMIT Systematic Underfeeding in All Intensive Care Unit Patients? Integrating the Results of the PERMIT Study in Our Clinical Practice Guidelines. JPEN J Parenter Enteral Nutr. 2016;40(2):156-158. https://doi.org/10.1177/0148607115595797.
  92. Heyland DK, Dhaliwal R, Wang M, Day AG. The prevalence of iatrogenic underfeeding in the nutritionally ‘at-risk’ critically ill patient: Results of an international, multicenter, prospective study. Clin Nutr. 2015;34(4):659-666. https://doi.org/10.1016/j.clnu.2014.07.008.
  93. Hoffer LJ, Bistrian BR. Nutrition in critical illness: a current conundrum. F1000Res. 2016;5:2531. https://doi.org/10.12688/f1000research.9278.1.
  94. Hoffer LJ, Bistrian BR. Why critically ill patients are protein deprived. JPEN J Parenter Enteral Nutr. 2013;37(4):441. https://doi.org/10.1177/0148607113487381.
  95. Hosny M, Nahas R, Ali S, et al. Impact of oral omega-3 fatty acids supplementation in early sepsis on clinical outcome and immunomodulation. The Egyptian Journal of Critical Care Medicine. 2013;1(3):119-126. https://doi.org/10.1016/j.ejccm.2013.11.002.
  96. Howard BM, Kornblith LZ, Christie SA, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open. 2017;2(1): e000108. https://doi.org/10.1136/tsaco-2017-000108.
  97. Huang W, Liu Y, Li L, et al. HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinase pathways. Inflammation. 2012;35(1): 350-362. https://doi.org/10.1007/s10753-011-9325-5.
  98. Ibrahim H.R. Insights into the structure-function relationships of ovalbumin, ovotransferrin, and lysozyme. In: Hen eggs: their basic and applied science. Ed. by T. Yamomoto, I.R. Juneja, H. Hatta, M. Kim. Boca Raton: CRC Press; 1997. P. 37-56.
  99. Ishibashi N, Plank LD, Sando K, Hill GL. Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med. 1998;26(9):1529-1535. https://doi.org/10.1097/00003246-199809000-00020.
  100. Jin Y, Blikslager AT. Myosin light chain kinase mediates intestinal barrier dysfunction via occludin endocytosis during anoxia/reoxygenation injury. Am J Physiol Cell Physiol. 2016;311(6):C996-C1004. https://doi.org/10.1152/ajpcell.00113.2016.
  101. Joel TJ, Steffi SS, Steffi SR. Antimicrobial activity of lysozyme against oral pathogens. AJPRHC. 2016;8(2):4246.
  102. Johnson D, Bayele H, Johnston K, et al. Tumour necrosis factor alpha regulates iron transport and transporter expression in human intestinal epithelial cells. FEBS Lett. 2004;573(1-3):195-201. https://doi.org/10.1016/j.febslet.2004.07.081.
  103. Kaliannan K, Wang B, Li XY, et al. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276. https://doi.org/10.1038/srep11276.
  104. Kesecioglu J, Eggimann P. What is new in selective decontamination of the digestive tract? Intensive Care Med. 2016;42(8):1270-1275. https://doi.org/10.1007/s00134-015-4009-5.
  105. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care. 2010;19(3): 261-268. https://doi.org/10.4037/ajcc2010197.
  106. Kim HS, Hong JT, Kim Y, Han SB. Stimulatory Effect of beta-glucans on Immune Cells. Immune Netw. 2011;11(4): 191-195. https://doi.org/10.4110/in.2011.11.4.191.
  107. Kirkpatrick AW, Roberts DJ, De Waele J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7): 1190-1206. https://doi.org/10.1007/s00134-013-2906-z.
  108. Kistler EB, Alsaigh T, Chang M, Schmid-Schonbein GW. Impaired small-bowel barrier integrity in the presence of lumenal pancreatic digestive enzymes leads to circulatory shock. Shock. 2012;38(3):262-267. https://doi.org/10.1097/SHK.0b013e31825b1717.
  109. Klaude M, Mori M, Tjader I, et al. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin Sci (Lond). 2012;122(3):133-142. https://doi.org/10.1042/CS20110233.
  110. Koekkoek W, van Setten CHC, Olthof LE, et al. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin Nutr. 2019; 38(2):883-890. https://doi.org/10.1016/j.clnu.2018. 02.012.
  111. Kompan L, Kremzar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999;25(2):157-161. https://doi.org/10.1007/s001340050809.
  112. Kortman GA, Boleij A, Swinkels DW, Tjalsma H. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One. 2012;7(1): e29968. https://doi.org/10.1371/journal.pone.0029968.
  113. Kortman GA, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev. 2014;38(6): 1202-1234. https://doi.org/10.1111/1574-6976.12086.
  114. Kovacs-Nolan J, Phillips M, Mine Y. Advances in the value of eggs and egg components for human health. J Agric Food Chem. 2005;53(22):8421-8431. https://doi.org/10.1021/jf050964f.
  115. Krentz T, Allen S. Bacterial translocation in critical illness. J Small Anim Pract. 2017;58(4):191-198. https://doi.org/10.1111/jsap.12626.
  116. Laftah AH, Sharma N, Brookes MJ, et al. Tumour necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice. Biochem J. 2006;397(1):61-67. https://doi.org/10.1042/BJ20060215.
  117. Lalles JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev. 2014;72(2):82-94. https://doi.org/10.1111/nure.12082.
  118. Lamarche MG, Wanner BL, Crepin S, Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev. 2008;32(3):461-473. https://doi.org/10.1111/j.1574-6976.2008.00101.x.
  119. Lee P, Peng H, Gelbart T, et al. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005;102(6):1906-1910. https://doi.org/10.1073/pnas.0409808102.
  120. Li Q, Zhang Q, Wang C, et al. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant. PLoS One. 2011; 6(6): e20460. https://doi.org/10.1371/journal.pone. 0020460.
  121. Li YC, Chen Y, Du J. Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. J Steroid Biochem Mol Biol. 2015;148: 179-183. https://doi.org/10.1016/j.jsbmb.2015.01.011.
  122. Lieberman JM, Sacchettini J, Marks C, Marks WH. Human intestinal fatty acid binding protein: report of an assay with studies in normal volunteers and intestinal ischemia. Surgery. 1997;121(3):335-342. https://doi.org/10.1016/s0039-6060(97)90363-9.
  123. Long J, Zaborina O, Holbrook C, et al. Depletion of intestinal phosphate after operative injury activates the virulence of P aeruginosa causing lethal gut-derived sepsis. Surgery. 2008;144(2):189-197. https://doi.org/10.1016/j.surg.2008.03.045.
  124. Louis K, Netea MG, Carrer DP, et al. Bacterial translocation in an experimental model of multiple organ dysfunctions. J Surg Res. 2013;183(2):686-694. https://doi.org/10.1016/j.jss.2013.01.064.
  125. Luo H, Hu S, Bian H, et al. Protective effects of valproic acid on gut barrier function after major burn injury and its mechanism. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(3):221-227. https://doi.org/10.3760/cma.j.issn. 2095-4352.2017.03.006.
  126. Luo HM, Du MH, Lin ZL, et al. Valproic acid treatment inhibits hypoxia-inducible factor 1alpha accumulation and protects against burn-induced gut barrier dysfunction in a rodent model. PLoS One. 2013;8(10): e77523. https://doi.org/10.1371/journal.pone.0077523.
  127. Lupton JR, Turner ND. Dietary fiber and coronary disease: does the evidence support an association? Curr Atheroscler Rep. 2003;5(6):500-505. https://doi.org/10.1007/s11883-003-0041-y.
  128. Malo MS, Alam SN, Mostafa G, et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut. 2010;59(11):1476-1484. https://doi.org/10.1136/gut.2010.211706.
  129. Manzanares W, Lemieux M, Langlois PL, Wischmeyer PE. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care. 2016;19:262. https://doi.org/10.1186/s13054-016-1434-y.
  130. Matthijsen RA, Derikx JP, Kuipers D, et al. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation. PLoS One. 2009;4(9): e7045. https://doi.org/10.1371/journal.pone.0007045.
  131. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211. https://doi.org/10.1177/0148607115621863.
  132. McDonald D, Ackermann G, Khailova L, et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere. 2016;1(4). https://doi.org/10.1128/mSphere.00199-16.
  133. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39(2):338-342. https://doi.org/10.1093/ajcn/39.2.338.
  134. Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5): 706-742. https://doi.org/10.1177/0148607117711387.
  135. Mena NP, Esparza A, Tapia V, et al. Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol Gastrointest Liver Physiol. 2008;294(1): G192-198. https://doi.org/10.1152/ajpgi.00122.2007.
  136. Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care. 2017;23(2):143-148. https://doi.org/10.1097/MCC.0000000000000386.
  137. Miao W, Wu X, Wang K, et al. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCbeta2. Int J Mol Sci. 2016;17(10). https://doi.org/10.3390/ijms17101696.
  138. Miller KR, Smith JW, Harbrecht BG, Benns MV. Early Enteral Nutrition in Trauma: Is There Still Any Doubt? Curr Trauma Rep. 2016;2(2):73-78. https://doi.org/10.1007/s40719-016-0045-z.
  139. Mine Y. Egg proteins and peptides in human health – chemistry, bioactivity and production. Curr Pharm Des. 2007;13(9):875-884. https://doi.org/10.2174/ 138161207780414278.
  140. Mirza H, Wu Z, Teo JD, Tan KS. Statin pleiotropy prevents rho kinase-mediated intestinal epithelial barrier compromise induced by Blastocystis cysteine proteases. Cell Microbiol. 2012;14(9):1474-1484. https://doi.org/10.1111/j.1462-5822.2012.01814.x.
  141. Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014;20(4): 214-223. https://doi.org/10.1016/j.molmed.2013.08.004.
  142. Molfino A, Amabile MI, Monti M, Muscaritoli M. Omega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both? Oxid Med Cell Longev. 2017;2017:5987082. https://doi.org/10.1155/2017/5987082.
  143. Moore EE, Jones TN. Benefits of immediate jejunostomy feeding after major abdominal trauma — a prospective, randomized study. J Trauma. 1986;26(10):874-881. https://doi.org/10.1097/00005373-198610000-00003.
  144. Moro K, Nagahashi M, Ramanathan R, et al. Resolvins and omega three polyunsaturated fatty acids: Clinical implications in inflammatory diseases and cancer. World J Clin Cases. 2016;4(7):155-164. https://doi.org/10.12998/wjcc. v4.i7.155.
  145. Nakagawa H, Tsunooka N, Yamamoto Y, et al. Pitavastatin prevents intestinal ischemia/reperfusion-induced bacterial translocation and lung injury in atherosclerotic rats with hypoadiponectinemia. Surgery. 2009;145(5):542-549. https://doi.org/10.1016/j.surg.2009.01.002.
  146. Noriega BS, Sanchez-Gonzalez MA, Salyakina D, Coffman J. Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota. Case Rep Med. 2016;2016:3089303. https://doi.org/10.1155/2016/3089303.
  147. Nouari W, Ysmail-Dahlouk L, Aribi M. Vitamin D3 enhances bactericidal activity of macrophage against Pseudomonas aeruginosa. Int Immunopharmacol. 2016;30:94-101. https://doi.org/10.1016/j.intimp.2015.11.033.
  148. Oami T, Chihade DB, Coopersmith CM. The microbiome and nutrition in critical illness. Curr Opin Crit Care. 2019;25(2):145-149. https://doi.org/10.1097/MCC. 0000000000000582.
  149. Oderinde BS, Agbede OO, Iheukwumere IN. Antiviral activity of hen egg-white lysozyme on Polio virus. Sokoto J Med Lab Sci. 2017;2(3):109120.
  150. Ooi JH, Chen J, Cantorna MT. Vitamin D regulation of immune function in the gut: why do T cells have vitamin D receptors? Mol Aspects Med. 2012;33(1):77-82. https://doi.org/10.1016/j.mam.2011.10.014.
  151. Ooi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr. 2013;143(10):1679-1686. https://doi.org/10.3945/jn.113.180794.
  152. Pande S, Kost C. Bacterial Unculturability and the Formation of Intercellular Metabolic Networks. Trends Microbiol. 2017;25(5):349-361. https://doi.org/10.1016/j.tim.2017.02.015.
  153. Parekh D, Patel JM, Scott A, et al. Vitamin D Deficiency in Human and Murine Sepsis. Crit Care Med. 2017;45(2):282-289. https://doi.org/10.1097/CCM.0000000000002095.
  154. Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619-1625. https://doi.org/10.3945/jn.109.104638.
  155. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141-153. https://doi.org/10.1038/nri3608.
  156. Polk HC, Jr., Shields CL. Remote organ failure: a valid sign of occult intra-abdominal infection. Surgery. 1977;81(3):310-313.
  157. Priestley GC, Brown JC. Effects of potassium para-aminobenzoate on growth and macromolecule synthesis in fibroblasts cultured from normal and sclerodermatous human skin, and rheumatoid synovial cells. J Invest Dermatol. 1979;72(4): 161-164. https://doi.org/10.1111/1523- 1747.ep12676226.
  158. Puleo F, Arvanitakis M, Van Gossum A, Preiser JC. Gut failure in the ICU. Semin Respir Crit Care Med. 2011;32(5): 626-638. https://doi.org/10.1055/s-0031-1287871.
  159. Qiao Y, Qian J, Lu Q, et al. Protective effects of butyrate on intestinal ischemia-reperfusion injury in rats. J Surg Res. 2015;197(2):324-330. https://doi.org/10.1016/j.jss.2015.04.031.
  160. Quraishi SA, De Pascale G, Needleman JS, et al. Effect of Cholecalciferol Supplementation on Vitamin D Status and Cathelicidin Levels in Sepsis: A Randomized, Placebo-Controlled Trial. Crit Care Med. 2015;43(9):1928-1937. https://doi.org/10.1097/CCM.0000000000001148.
  161. Raa J. Immune modulation by non-digestible and non-absorbable beta-1,3/1,6-glucan. Microb Ecol Health Dis. 2015;26:27824. https://doi.org/10.3402/mehd.v26.27824.
  162. Reintam A, Parm P, Kitus R, et al. Gastrointestinal symptoms in intensive care patients. Acta Anaesthesiol Scand. 2009;53(3):318-324. https://doi.org/10.1111/j.1399-6576. 2008.01860.x.
  163. Reintam Blaser A, Starkopf J, Alhazzani W, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017;43(3):380-398. https://doi.org/10.1007/s00134-016-4665-0.
  164. Reintam Blaser A, Starkopf J, Malbrain ML. Abdominal signs and symptoms in intensive care patients. Anaesthesiol Intensive Ther. 2015;47(4):379-387. https://doi.org/10.5603/AIT.a2015.0022.
  165. Rentea RM, Liedel JL, Welak SR, et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg. 2012;47(6):1135-1142. https://doi.org/10.1016/j.jpedsurg.2012.03.018.
  166. WHO, Food and Agricultural organization of the UN. Probiotics in Food. Health and nutritional properties and guidelines for evaluation: Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Rome; 2006. 53 p.
  167. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486-552. https://doi.org/10.1097/CCM. 0000000000002255.
  168. Rice PJ, Adams EL, Ozment-Skelton T, et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther. 2005;314(3):1079-1086. https://doi.org/10.1124/jpet.105.085415.
  169. Reid G, Jass J, Sebulsky MT, McCormick JK. Potential uses of probiotics in clinical practice. Clin Microbiol Rev. 2003;16(4):658-672. https://doi.org/10.1128/cmr.16.4.658-672.2003.
  170. Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104 Suppl 2:S1-63. https://doi.org/10.1017/S0007114510003363.
  171. Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011;3(1):118-134. https://doi.org/10.3390/nu3010118.
  172. Sanchez M, Pizer BP, Alcock SR. Enteral antimicrobials. In: Infection control in the intensive care unit. Ed. by H.K.F. Van Saene, M.A. De La Cal, L. Silvestri. Milan: Springer; 2005. P. 171-187.
  173. Sangkhae V, Nemeth E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv Nutr. 2017;8(1):126-136. https://doi.org/10.3945/an.116.013961.
  174. Santos-Beneit F. The Pho regulon: a huge regulatory network in bacteria. Front Microbiol. 2015;6:402. https://doi.org/10.3389/fmicb.2015.00402.
  175. Saxena I, Tayyab S. Protein proteinase inhibitors from avian egg whites. Cell Mol Life Sci. 1997;53(1):13-23. https://doi.org/10.1007/pl00000575.
  176. Schellekens DH, Hundscheid IH, Leenarts CA, et al. Human small intestine is capable of restoring barrier function after short ischemic periods. World J Gastroenterol. 2017;23(48): 8452-8464. https://doi.org/10.3748/wjg.v23.i48.8452.
  177. Schwartz N, Hosford M, Sandoval RM, et al. Ischemia activates actin depolymerizing factor: role in proximal tubule microvillar actin alterations. Am J Physiol. 1999;276(4): F544-551. https://doi.org/10.1152/ajprenal.1999.276.4.F544.
  178. Seki H, Tani Y, Arita M. Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins Other Lipid Mediat. 2009;89(3-4):126-130. https://doi.org/10.1016/j.prostaglandins.2009.03.002.
  179. Sener G, Toklu H, Ercan F, Erkanli G. Protective effect of beta-glucan against oxidative organ injury in a rat model of sepsis. Int Immunopharmacol. 2005;5(9):1387-1396. https://doi.org/10.1016/j.intimp.2005.03.007.
  180. Seron-Arbeloa C, Zamora-Elson M, Labarta-Monzon L, Mallor-Bonet T. Enteral nutrition in critical care. J Clin Med Res. 2013;5(1):1-11. https://doi.org/10.4021/jocmr1210w.
  181. Shaki F, Pourahmad J. Mitochondrial toxicity of depleted uranium: protection by Beta-glucan. Iran J Pharm Res. 2013;12(1):131-140. 3813223.
  182. Shankar B, Daphnee DK, Ramakrishnan N, Venkataraman R. Feasibility, safety, and outcome of very early enteral nutrition in critically ill patients: Results of an observational study. J Crit Care. 2015;30(3):473-475. https://doi.org/10.1016/j.jcrc.2015.02.009.
  183. Sharma N, Laftah AH, Brookes MJ, et al. A role for tumour necrosis factor alpha in human small bowel iron transport. Biochem J. 2005;390(Pt 2):437-446. https://doi.org/10.1042/BJ20050256.
  184. Sharpe SM, Qin X, Lu Q, et al. Loss of the intestinal mucus layer in the normal rat causes gut injury but not toxic mesenteric lymph nor lung injury. Shock. 2010;34(5):475-481. https://doi.org/10.1097/SHK.0b013e3181dc3ff5.
  185. Shen RL, Dang XY, Dong JL, Hu XZ. Effects of oat beta-glucan and barley beta-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. J Agric Food Chem. 2012;60(45):11301-11308. https://doi.org/10.1021/jf302824h.
  186. Shimizu K, Ogura H, Hamasaki T, et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig Dis Sci. 2011;56(4):1171-1177. https://doi.org/10.1007/s10620-010-1418-8.
  187. Shor R, Halabe A, Rishver S, et al. Severe hypophosphatemia in sepsis as a mortality predictor. Ann Clin Lab Sci. 2006;36(1):6772.
  188. Sima P, Vannucci L, Vetvicka V. beta-glucans and cholesterol (Review). Int J Mol Med. 2018;41(4):1799-1808. https://doi.org/10.3892/ijmm.2018.3411.
  189. Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38 (1):48-79. https://doi.org/10.1016/j.clnu.2018.08.037.
  190. Stoutenbeek CP, van Saene HK, Little RA, et al. The effect of selective decontamination of the digestive tract on mortality in multiple trauma patients: a multicenter randomized controlled trial. Intensive Care Med. 2007;33(2):261-270. https://doi.org/10.1007/s00134-006-0455-4.
  191. Su D, Nie Y, Zhu A, et al. Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Front Physiol. 2016;7:498. https://doi.org/10.3389/fphys.2016.00498.
  192. Sun Z, Wang X, Deng X, et al. The influence of intestinal ischemia and reperfusion on bidirectional intestinal barrier permeability, cellular membrane integrity, proteinase inhibitors, and cell death in rats. Shock. 1998;10(3):203-212. https://doi.org/10.1097/00024382-199809000-00009.
  193. Taylor BE, McClave SA, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med. 2016;44(2): 390-438. https://doi.org/10.1097/CCM.0000000000001525.
  194. Treangen TJ, Wagner J, Burns MP, Villapol S. Traumatic Brain Injury in Mice Induces Acute Bacterial Dysbiosis Within the Fecal Microbiome. Front Immunol. 2018;9:2757. https://doi.org/10.3389/fimmu.2018.02757.
  195. Upala S, Sanguankeo A, Permpalung N. Significant association between vitamin D deficiency and sepsis: a systematic review and meta-analysis. BMC Anesthesiol. 2015;15:84. https://doi.org/10.1186/s12871-015- 0063-3.
  196. Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol. 2013;31(4):334-342. https://doi.org/10.4103/0255-0857.118870.
  197. van Hoek MJ, Merks RM. Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst Biol. 2012;6:22. https://doi.org/10.1186/1752-0509-6-22.
  198. Vetvicka V. Glucan-immunostimulant, adjuvant, potential drug. World J Clin Oncol. 2011;2(2):115-119. https://doi.org/10.5306/wjco.v2.i2.115.
  199. Wan X, Bi J, Gao X, et al. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice. Nutrients. 2015;7(8): 6294-6312. https://doi.org/10.3390/nu7085288.
  200. Wang D, Naydenov NG, Feygin A, et al. Actin-Depolymerizing Factor and Cofilin-1 Have Unique and Overlapping Functions in Regulating Intestinal Epithelial Junctions and Mucosal Inflammation. Am J Pathol. 2016;186(4): 844-858. https://doi.org/10.1016/j.ajpath.2015.11.023.
  201. Wang H, Chen Y, Xiang J, et al. Oat β-glucan alleviates 5-Fluorouracil-induced intestinal barrier dysfunction in vivo. Int J Clin Exp Pathol. 2017;10(4):4312-4320.
  202. Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909-2912. https://doi.org/10.4049/jimmunol.173.5.2909.
  203. Wang Y, Ames NP, Tun HM, et al. High Molecular Weight Barley beta-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Front Microbiol. 2016;7:129. https://doi.org/10.3389/fmicb.2016.00129.
  204. Watson AJ, Hughes KR. TNF-alpha-induced intestinal epithelial cell shedding: implications for intestinal barrier function. Ann N Y Acad Sci. 2012;1258:1-8. https://doi.org/10.1111/j.1749-6632.2012.06523.x.
  205. Weijs PJ. Fundamental determinants of protein requirements in the ICU. Curr Opin Clin Nutr Metab Care. 2014;17(2):183-189. https://doi.org/10.1097/MCO. 0000000000000029.
  206. Weijs PJ, Looijaard WG, Beishuizen A, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18(6):701. https://doi.org/10.1186/s13054-014-0701-z.
  207. Welsh AM, Kruger P, Faoagali J. Antimicrobial action of atorvastatin and rosuvastatin. Pathology. 2009;41(7):689-691. https://doi.org/10.3109/00313020903305860.
  208. Wilczak J, Blaszczyk K, Kamola D, et al. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 2015;6(2):590-603. https://doi.org/10.1039/c4fo00638k.
  209. Williams J, Evans RW, Moreton K. The iron-binding properties of hen ovotransferrin. Biochem J. 1978;173(2): 533-539. https://doi.org/10.1042/bj1730533.
  210. Williams JM, Duckworth CA, Burkitt MD, et al. Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol. 2015;52(3): 445-455. https://doi.org/10.1177/0300985814559404.
  211. Wilson B, Typpo K. Nutrition: A Primary Therapy in Pediatric Acute Respiratory Distress Syndrome. Front Pediatr. 2016;4:108. https://doi.org/10.3389/fped.2016.00108.
  212. Wolff NS, Hugenholtz F, Wiersinga WJ. The emerging role of the microbiota in the ICU. Crit Care. 2018;22(1):78. https://doi.org/10.1186/s13054-018-1999-8.
  213. Xu S, Xu X, Zhang L. Effect of heating on chain conformation of branched beta-glucan in water. J Phys Chem B. 2013;117(28):8370-8377. https://doi.org/10.1021/jp403202u.
  214. Yang R, Harada T, Mollen KP, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med. 2006;12(4-6): 105-114. https://doi.org/10.2119/2006-00010.Yang.
  215. Yang T, Wang L, Sun R, et al. Hydrogen-Rich Medium Ameliorates Lipopolysaccharide-Induced Barrier Dysfunction Via Rhoa-Mdia1 Signaling in Caco-2 Cells. Shock. 2016;45(2):228-237. https://doi.org/10.1097/SHK.0000000000000503.
  216. Yilmaz H, Sahiner E, Darcin T, et al. Is vitamin D supplementation a new hope for the therapy of the septic shock? Endocr Regul. 2013;47(3):133-136. https://doi.org/10.4149/endo_2013_03_133.
  217. Zaborin A, Defazio JR, Kade M, et al. Phosphate-containing polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens. Antimicrob Agents Chemother. 2014;58(2):966-977. https://doi.org/10.1128/AAC.02183-13.
  218. Zaborin A, Gerdes S, Holbrook C, et al. Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate. PLoS One. 2012;7(4): e34883. https://doi.org/10.1371/journal.pone.0034883.

Copyright (c) 2020 Chepur S.V., Pluzhnikov N.N., Chubar’ O.V., Cygan V.N., Bakulina L.S., Sidorov S.P., Bazhenov M.V., Mosin A.V., Vinogradov M.V., Semakin R.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies