Zinc, brain, behavior

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of the review was to analyze current notions about role of essential trace element zinc in brain activity and therefore – in behavior. At the beginning of the review the basic data about zinc metabolism was described. The facts of zinc involvement into neurologic disorders and human cognition were represented. The results of the own investigation, devoted zinc peroral treatment and intrabrain microinjections influence on rats normal and pathological motor behavior were described. In particular, it is shown that zinc, depending on the dose and its mode of entry into the organism, can weaken and prevent the development of picrotoxin-induced neostriatal hyperkinesis (human Huntington horea analog), but it may aggravate hyperkinesis symptoms and even independently cause the motor stereotypy. On the basis of their own data and literary, it was suggested that neurons membranes structures are different sensitive to a certain zinc concentration and what does the specific way of behavior realization is ultimately depend.

Full Text

Restricted Access

About the authors

Аndrey F. Yakimovskii

Pavlov First Medical University of St. Petersburg; Pavlov Institute of Physiology, Russian Academy of Science

Author for correspondence.
Email: jakim2010@gmail.com
SPIN-code: 7151-8991

Dr. Sci. (Med.), Professor

Russian Federation, 6/8 L’va Tolstogo str., Saint Petersburg, 197022; St. Petersburg

References

  1. Andrusishina IN, Golub IA, Lampeka EG, et al. Metabolic mineral disorders in patients with Wilson–Konovalov disease. Trace elements in medicine. 2011;12(1–2):47–50. (In Russ.)
  2. Babaniyazova ZKh, Babaniyazov KhKh, Radionov IA, et al. Acizol as a remedy against zinc deficiency. Trace elements in medicine. 2010;11(1):25–30. (In Russ.)
  3. Kotenko KV, Belyaev IK, Buzulukov YuP, et al. Experimental study of zinc oxide-labelled nanoparticles biokinetics in rats after single oral administration. Medical Radiology and Radiation Safety 2011;56(2):5–10. (In Russ.)
  4. Lebedeva SA, Babanijazova ZH, Babanijazov HH, Radionov IA. Novye podhody farmakologicheskoj korrekcii gipoksicheskih sostojanij. Vestnik OGU. 2011;(15):78–81. (In Russ.)
  5. Matyuk YV, Bogdanov RR, Bogdanov AR. Identification of dietary intake of trace elements at the early stage Parkinsons disease. Trace Elements in Medicine. 2018;19(3):18–23. (In Russ.) doi: 10.19112/2413-6174-2018-19-3-18-32
  6. Oberleas D, Skalny AV, Skalnaya MG, et al. Pathophysiology of microelementoses. Post 2. Zinc. Pathogenesis. 2015;13(4):9–17. (In Russ.)
  7. Podzolkov VI, Pokrovskaya AE. Difficulties of diagnostics and treatment Wilson-Konovalov disease. Clinical Medicine. 2017;95(5): 465–470. (In Russ.) doi: 10.18821/0023-2149-2017-95-5-465-470
  8. Salnikova EV. Human needs for zinc and its sources (Review). Trace Elements in Medicine. 2016;17(4):11–15. (In Russ.) doi: 10.19112/2413-6174-2016-17-4-11-15
  9. Skalny AV, Fesyun AD, Ivashkiv II, et al. Influence of zinc preparation «Acizol» on body elemental status and functional reserves under conditions of increased psycho-emotional and physical stress. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2011;9(6):47–55. (In Russ.)
  10. Fesenko AG. Mikrojelementarnaja korrekcija funkcional’nogo sostojanija organizma professional’nyh regbistok v sorevnovatel’nyj period. Vestnik OGU. 2011;(15):144–149. (In Russ.)
  11. Khaliullina SV. Clinical significance of zinc deficiency in the child (literature review). The Bulletin of Contemporary Clinical Medicine. 2013;6(3):72–78. (In Russ.) doi: 10.20969/VSKM.2013.6(3).72-78.
  12. Shantyr’ II, Yakovleva MV, Vlasenko MA. Zinc deficiency condition among the inhabitants of Saint Petersburg. Preventive and Clinical Medicine. 2015;57(4):12–16. (In Russ.)
  13. Shapovalova KB. Neostriatum I regulatsija proizvolnogo dvizhenija. Saint Petersburg: Nauka; 2015. 153 p. (In Russ.)
  14. Yakimovskii AF. Vlijanie hlorida cinka, vvedjonnogo v neostriatum, na dvigatel’noe povedenie krys. Zhurnal vysshej nervnoj dejatel’nosti. 2011;61(2):212–218. (In Russ.)
  15. Yakimovskii AF. The ability of zinc to recover conditioned avoidance reflex, disturbed by intrastriatal injection of picrotoxin in rats. Trace Elements in Medicine. 2014;15(3):27–32. (In Russ.)
  16. Yakimovskii AF. Neurobiology of zinc. Advance in Current Biology. 2019;139(3):267–279. (In Russ.) doi: 10.1134/S0042132419030104
  17. Yakimovskii AF. Influence of zinc treatment on normal and pathological motor behavior of rat. Trace Elements in Medicine. 2020;21(2): 34–40. (In Russ.) doi: 10.19112/2413-6174-2020-21-2-34-40
  18. Yakimovskii AF, Varshavskaya VM. Ethiopatogenesis of Huntington’s disease: results and perspectives of experimental modeling. Medical Academic Journal. 2006;6(2):28–40. (In Russ.)
  19. Yakimovskii AF, Zanin KV. The influence of zinc donator acyzol into rat’s locomotor behavior. Medical Academic Journal. 2018;18(1):89–93. (In Russ.)
  20. Yakimovskii AF, Kryzhanovskaya SYu. The effect of intrastriatal zinc acetate injections on normal and pathological locomotor behavior in rats. Medical Academic Journal. 2015;15(2)50–54. (In Russ.)
  21. Yakimovskii AF, Kryzhanovskaya SYu. Zinc chloride and zinc acetate injected into the neostriatum produce opposite effect on locomotor behavior of rats. Bulletin of Experimental and Biologic Medicine. 2015;160(8):252–254. (In Russ.)
  22. Yakimovskii AF, Stepanov II. Vlijanie hlorida cinka na pikrotoksinovyj giperkinez zavisit ot ego koncentracii v rastvore, in’eciruemom v neostriatum krys. Bulletin of Experimental and Biologic Medicine. 2010;150(12):604–606. (In Russ.)
  23. Yakimovskii AF, Shantyr’ II, Vlasenko MA, Yakovleva MV. Vlijanie acizola na soderzhanie cinka v plazme krovi i golovnom mozge krys. Bjulleten’ jeksperimental’noj biologii i mediciny. Bulletin of Experimental and Biologic Medicine. 2016;162(9):268–270. (In Russ.)
  24. Yakimovskii AF, Shantyr’ II, Vlasenko MA, et al. The influence of acizol to bioelements content in rat’s blood plasma, parenchimal organs and brain. Biomedical Chemistry. 2018;64(2):183–187. (In Russ.) doi: 10.18097/PBMC20186402183
  25. Amani R, Saeidi S, Nazari Z, Nematpour S. Correlation between dietary zinc intakes and its serum levels with depression scales in young female students. Biol. Trace Elem. Res. 2010;137(2):150–158. doi: 10.1007/s12011-009-8572-x
  26. Bitanihirwe BK, Cunningham MG. Zinc: the brains dark horse. Synapse. 2009;63(11): 1029–1049. doi: 10.1002/syn.20683
  27. Brewer GJ, Kanzer SH, Zimmerman EA, et al. Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease. Am J Alzheimers Dis Other Demen. 2010;25(7):572–575. doi: 10.1177/1533317510382283
  28. Cole TB, Wenzel HJ, Kafer KE, et al. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. PNAS USA. 1999;96(4):1716–1721. doi: 10.1073/pnas.96.4.1716
  29. Dorofeeva NA, Tikhonov DB, Barygin OI, et al. Action of extracellular divalent cations on native alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. J Neurochem. 2005;95(6):1704–1712. doi: 10.1111/j.1471-4159.2005.03533.x
  30. Fantin M, Marti M, Auberson YP, Morari M. NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways. J Neurochem. 2007;103(6);2200–2211. doi: 10.1111/j.1471-4159.2007.04966.x
  31. Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–462. doi: 10.1038/nrn1671
  32. Genoud S, Roberts BR, Gunn AP, et al. Subcellular compartmentalization of copper, iron, manganese, and zinс in the Parkinson’s disease brain. Metallomics. 2017;9(10):1447–1455. doi: 10.1039/C7MT00244K
  33. Graybiel AM. The basal ganglia. Curr biol. 2000;10(14): R509–R511. doi: 10.1016/S0960-9822(00)00593-5
  34. Irmish G, Schlaefke D, Richter J. Zinc and fatty acids in depression. Neuroche Res. 2010;35(9):1376–1383. doi: 10.1007/s11064-010-0194-3
  35. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 2015;95(3):749–784. doi: 10.1152/physrev.00035.2014
  36. King JC, Brown KH, Gibson RS, et al. Biomarkers of nutrition for development (BOND) – zinc review. J Nutr. 2016;146(4):858S-885S. doi: 10.3945/jn.115.220079
  37. Lonnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130(5):1378S-1383S. doi: 10.1093/jn/130.5.1378S
  38. Mabrouk OS, Mela F, Calcagno M, et al. GluN2A and GluN2B NMDA receptor subunits differentially modulate striatal output pathways and contribute to levodopa-induced abnormal involuntary movements in dyskinetic rats. ACS Chem Neurosci. 2013;4(5): 808–816. doi: 10.1021/cn4000016d
  39. Marcellini M, Di Ciommo V, Callea F, et al. Treatment of Wilson’s disease with zinc from the time of diagnosis in pediatric patients: a single-hospital, 10-year follow-up study. J Lab Clin Med. 2005;145(3):139–143. doi: 10.1016/j.lab.2005.01.007
  40. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 2013;4(1):82–91. doi: 10.3945/an.112.003038
  41. Mlyniec K, Nowak G. Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants. Pharmacol Rep. 2012;64(2):249–255. doi: 10.1016/s1734-1140(12)70762-4
  42. Modabbernia A, Arora M, Reichenberg A. Environmental exposure to metals, neurodevelopment, and psychosis. Curr Opin Pediatr. 2016;28(2):243–249. doi: 10.1097/MOP.0000000000000332
  43. Nations SP, Boyer PJ, Love LA, et al. Denture cream: An unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology. 2008;71(9):639–643. doi: 10.1212/01.wnl.0000312375.79881.94
  44. Prasad A.S. Zinc in humans: health disorders and therapeutic effects. Trace Elements in Medicine. 2014;15(1):3–12
  45. Rivas-Garcia TE, Marcelo-Pons, Martinez-Arnau F, et al. Blood zinc levels and cognitive and functional evaluation in non-demented older patients. Experim Gerontol. 2018;108(15):28–34. doi: 10.1016/j.exger.2018.03.003
  46. Rulon LL, Robertson JD, Lovell MA, et al. Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res. 2000;75(1–3):79–85. doi: 10.1385/BTER:75:1-3:79
  47. Sternlieb I. Wilsons disease. Clinics in liver disease. 2000;4(1):229–239. doi: 10.1016/S1089-3261(05)70105-7
  48. Szewczyk B. Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci. 2013;5:33. doi: 10.3389/fnagi.2013.00033
  49. Takeda A, Tamano H. Cognitive decline due to excess synaptic Zn signaling in the hippocampus. Front Aging Neurosci. 2014;6:26. doi: 10.3389/fnagi.2014.00026
  50. Tepper J, Lee C. GABA-ergic control of substantia nigra dopaminergic neuron. Prog Brain Res. 2007;160:189–208. doi: 10.1016/S0079-6123(06)60011-3
  51. Vastagh C, Gardoni F, Bagetta V, et al. N-Methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons. J Biol Chemistry. 2012;287(22):18103–18114. doi: 10.1074/jbc.M112.347427
  52. Warthon-Medina M, Moran VH, Stammers A-L, et al. Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis. Eur J Clin Nutr.2015;69(4): 649–661. doi: 10.1038/ejcn.2015.60
  53. Yelnik J. Functional anatomy of the basal ganglia. Mov Disord. 2002;17(Suppl 3):S15–S21. doi: 10.1002/mds.10138

Copyright (c) 2021 Yakimovskii А.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies