European guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death 2022: cardiomyopathy. What’s new?

Cover Page


Cite item

Abstract

The review provides information on new indications that should be guiden the diagnosis and treatment of ventricular arrhythmias in patients with cardiomyopathy. The analysis of modern definitions and classifications of cardiomyopathy is given. The issues of ventricular arrhythmias in different cardiomyopathy phenotypes, risk stratification of sudden cardiac death and its prevention are considered in detail.

Full Text

In the new European recommendations for treating patients with ventricular arrhythmias (VAs), a large section is devoted to cardiomyopathies (CMPs). Cardiac arrhythmias are perhaps one of the key clinical symptoms of these relatively rare diseases, and sudden cardiac death (SCD) is the classic complication of most CMPs.

This section focuses on CMPs in the order they are presented in European recommendations.

Dilated cardiomyopathy (DCM)

DCM is characterized by dilatation and systolic dysfunction of the left ventricle or both ventricles and is not associated with ischemic heart disease (IHD) or abnormal hemodynamic loads (such as arterial hypertension and valvular disease) [1, 2]. SCD occurs in 12% of patients with DCM and accounts for 25%–35% of the overall cause of death in DCM [3–5].

According to the literature, DCM affects 1 per 2500–2700 populations [6, 7]. However, the true incidence is most likely higher.

The causes of the appearance of DCM in a patient can be genetic, acquired, or mixed when a genetic predisposition is formed in the presence of external factors, for example, the pre- and postpartum period, alcohol abuse, chemotherapy, and others [8]. Pathogenic mutations are detected in 25–55% of patients with DCM, with a predominant autosomal dominant type of inheritance [2]. More often than others, mutations are found in the titin (TTN) (31%) and lamin (LMNA) (14.3%) genes [9]. Mutations in genes such as LMNA, PLN (encodes the phospholamban protein), RBM20 (encodes the splicing transcription factor), and FLNC (encodes filamin C) are associated with a high risk of VAs and SCD [10–14]. Carriers of desmosomal and LMNA mutations have a high incidence of VAs and SCD, which does not depend on the LV ejection fraction (EF) [14]. The identification of pathogenic mutations plays an important role in SCD risk stratification.

The phenotype, particularly in a genetically determined disease, upon disease onset may not correspond to the standard criteria for the disease and may change over time. Thus, in the early disease stages, the patient may only have a decrease in EF without dilatation of the cardiac chambers. In this regard, a new category of DCM has been proposed, that is, hypokinetic nondilated cardiomyopathy (HNDCM) [8]. HNDCM is characterized by LV or biventricular global systolic dysfunction (LVEF <45%) without dilatation, and systolic dysfunction is not associated with abnormal myocardial stress or coronary artery disease [8]. The 2023 European guidelines for the management of patients with CMPs made a special attention to this syndrome. It has been proposed to initially replace the term “hypokinetic nondilated cardiomyopathy” with “nondilated left ventricular cardiomyopathy” (NDLVCMP) and then to identify NDLVCMP as a new independent phenotype of CMPs [15]. The term “NDLVCM” introduced in 2023 appears to be a broader concept than HNDCM. NDLVCMP is characterized by the presence of LV nonischemic scarring or fatty degeneration, regardless of the presence or absence of global or local impairment of wall mobility or isolated global hypokinesia of the LV walls without scarring. This disease is also characterized by ventricular rhythm disturbances.

An integrated approach to diagnosing DCM is essential. The role of echocardiography (EchoCG), particularly in the early disease stages, is undeniable. Magnetic resonance imaging (MRI) of the heart with contrast enhancement enables not only to determine LVEF but also to identify areas of fibrosis and, by their localization, clarify the etiology (ischemic, i.e., subendocardial, transmural fibrosis, corresponding in localization to the blood supply system of a certain coronary artery; nonischemic, i.e., diffuse interstitial intramural, subepicardial fibrosis, or subendocardial, but not corresponding to the blood supply system of a particular coronary artery) [16, 17]. In addition, MRI findings, along with genetic data, can contribute to SCD risk stratification [2]. According to a meta-analysis of 29 studies that pooled MRI findings from 2,948 patients with DCM, late gadolinium enhancement (LGE) is associated with an increased risk of arrhythmic endpoints (VA and SCD), major cardiovascular events, and all-cause death [18]. A recent study of 1020 patients with DCM revealed that both LGE and LVEF were risk markers for all-cause and cardiovascular deaths; however, only LGE was associated with the risk of SCD [19]. The recommendations emphasize the importance of performing cardiac MRI with contrast in patients with DCM/HNDCM.

The registration of electrocardiograms (ECG) is recommended not only for patients but also for their first-degree relatives. The presence of pathology of the sinus and atrioventricular (AV) nodes, most often in combination with bundle branch blocks, when the disease manifests at a young age should raise suspicion of LMNA-associated DCM with a poor prognosis [20].

The recommendations for genetic testing are presented in Table 1 [2].

 

Table 1. Recommendations for genetic testing for dilated/hypokinetic nondilated cardiomyopathy

Таблица 1. Рекомендации по генетическому тестированию при дилатационной / гипокинетической недилатационной кардиомиопатии

Note: DCM — dilated cardiomyopathy; HNDCM — hypokinetic nondilated cardiomyopathy; LMNA — nuclear lamin gene; PLN — phospholamban gene, RBM20 — gene encoding a splicing transcription factor; FLNC — filamin C gene.

Примечание: ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; LMNA — ген ядерных ламинов; PLN — ген фосфоламбана, RBM20 — ген, кодирующий транскрипционный фактор сплайсинга; FLNC — ген филамина С.

 

The recommendations for examining patients and their relatives are presented in Table 2 [2].

 

Table 2. Recommendations for the examination of patients suffering from dilated/hypokinetic non-dilated cardiomyopathy and their relatives

Таблица 2. Рекомендации по обследованию пациентов, страдающих дилатационной / гипокинетической недилатационной кардиомиопатией, и их родственников

Note: SCD — sudden cardiac death; DCM — dilated cardiomyopathy; HNDCM — hypokinetic nondilated cardiomyopathy; MRI — magnetic resonance imaging.

Примечание: ВСС — внезапная сердечная смерть; ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; МРТ — магнитно-резонансная томография.

 

The 2022 European guidelines provide an algorithm for risk stratification and primary prevention of sudden cardiac death in patients with DCM/HNDCM (Fig. 1) [2].

 

Fig. 1. Algorithm for risk stratification and primary prevention of sudden cardiac death in patients with dilated cardiomyopathy/hypokinetic non-dilated cardiomyopathy [2]

AV — atrioventricular; CMR — cardiac magnetic resonance; DCM — dilated cardiomyopathy; HNDCM — hypokinetic non-dilated cardiomyopathy; ICD — implantable cardioverter defibrillator; ILR — implantable loop recorder; LMNA — nuclear lamin gene; LVEF — left ventricular ejection fraction; N — no; NSVT — non-sustained ventricular tachycardia; PES, programmed electrical stimulation; SCD — sudden cardiac death; SMVT — sustained monomorphic ventricular tachycardia; VA — ventricular arrhythmias; Y — yes

a Risk factors: unexplained syncope, pathogenic variants in PLN, FLNC, or RBM20, LGE on CMR, inducible SMVT at PES. b The 2018 ESC Guidelines for the diagnosis and management of syncope

Рис. 1. Алгоритм стратификации риска и первичной профилактики внезапной сердечной смерти у пациентов с дилатационной кардиомиопатией / гипокинетической недилатационной кардиомиопатией [2].

АВ — атриовентрикулярная; ВСС — внезапная сердечная смерть; ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; ЖА — желудочковые аритмии; ИПР — имплантируемые петлевые регистраторы; ИКД — имплантируемый кардиовертер-дефибриллятор; ЛЖ — левый желудочек; МРТ — магнитно-резонансная томография; НУЖТ — неустойчива желудочковая тахикардия; УМЖТ — устойчивая мономорфная желудочковая тахикардия; ФВ — фракция выброса; ЭФИ — электрофизиологическое исследование; LMNA — ген ядерных ламинов

а Обмороки, фиброз при МРТ сердца, индуцируемые устойчивые мономорфные желудочковые тахикардии при эндоЭФИ, патогенные

 

Given the high risk of SCD, patients with DCM need not only secondary but also primary prevention of SCD. The 2022 European guidelines provide clear guidance on who is eligible for primary and secondary prevention of SCD. Because the main clinical manifestation of DCM/HNDCM is chronic heart failure (CHF), treatment of CHF, in accordance with current recommendations, is mandatory for at least 3 months before deciding on implantable cardioverter-defibrillator (ICD) implantation for the primary prevention of SCD [2]. The patient’s cardiac function and clinical status after 3 months of optimal medical therapy (OMT) must be re-evaluated before the initial prophylactic implantation of an ICD. LVEF with OMT can be significantly improved in DCM caused by myocarditis or TTN mutations [2].

The recommendations for the primary prevention of SCD are presented in Table 3 [2].

 

Таблица 3. Рекомендации по первичной профилактике внезапной сердечной смерти у пациентов, страдающих дилатационной / гипокинетической недилатационной кардиомиопатией

Table 3. Recommendations for the primary prevention of sudden cardiac death in patients suffering from dilated/hypokinetic nondilated cardiomyopathy

Note: AV — atrioventricular; CMR — cardiac magnetic resonance; DCM — dilated cardiomyopathy; HNDCM — hypokinetic non-dilated cardiomyopathy; EF — ejection fraction; ICD — implantable cardioverter defibrillator; LV, left ventricul; NYHA, New York Heart Association; LMNA — nuclear lamin gene; PES — programmed electrical stimulation; PLN — phospholamban gene; RBM20 — gene encoding a splicing transcription factor; FLNC — filamin C gene. а Based on the risk calculator LMNA-risk VTA calculator Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies (https://lmna-risk-vta.fr/).

Примечание: АВ — атриовентрикулярное; ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; ИКД — имплантируемый кардиовертер-дефибриллятор; ЛЖ — левый желудочек; МРТ — магнитно-резонансная томография; ОМТ — оптимальная медикаментозная терапия; ФВ — фракция выброса; ЭФИ — электрофизиологическое исследование; NYHA — New York Heart Association; LMNA — ген ядерных ламинов; PLN — ген фосфоламбана, RBM20 — ген, кодирующий транскрипционный фактор сплайсинга; FLNC — ген филамина С. а Риск рассчитывается с помощью калькулятора LMNA-risk VTA calculator Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies (https://lmna-risk-vta.fr/)

 

The recommendations for the secondary prevention of sudden cardiac death are presented in Table 4 [2].

 

Таблица 4. Рекомендации по вторичной профилактике внезапной сердечной смерти у пациентов, страдающих дилатационной / гипокинетической недилатационной кардиомиопатией

Table 4. Recommendations for secondary prevention of sudden cardiac death in patients suffering from dilated/hypokinetic nondilated cardiomyopathy

Note: DCM — dilated cardiomyopathy; HNDCM — hypokinetic nondilated cardiomyopathy; ICD — implantable cardioverter defibrillator.

Примечание: ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; ИКД — имплантируемый кардиовертер-дефибриллятор.

 

ICDs reduce the risk of not only arrhythmic death but also death from all causes [2]. Moreover, frequent, painful ICD shocks worsen the quality of life of the patients. The implantation of ICDs with antitachycardia pacing (ATP) functionality and optimization of ICD programing can reduce the number of ICD shocks delivered in response to ventricular tachycardia (VT); however, additional drug therapy is almost always required to reduce symptomatic episodes of VA [2]. The recommendations for antiarrhythmic drug selection are based on the results of the OPTIC trial, where 412 patients with ICD within 21 days after VT/ventricular fibrillation (VF) were randomized to three antiarrhythmic treatment groups: amiodarone plus beta-blocker, sotalol alone, or beta-blocker alone. The frequency of ICD shocks after 1 year was 10.3% in the amiodarone and beta-blocker group, 24.3% in the sotalol group, and 38.5% in the beta-blocker group [21]. Only limited data are available on the efficiency and safety of sodium channel blockers in reducing the number of ICD activations in DCM [2]. They may be useful for reducing VAs only in a few patients without severe heart failure and low LVEF. The recommendations emphasize the need to align the level of efficiency and drug-related side effects when choosing antiarrhythmic therapy.

In DCM, monomorphic VTs predominate (Fig. 2), which are based on the reentry mechanism.

 

Fig. 2. Genetic risk for VA/SCD, typical triggers for VA/SCD, age at presentation with VA/SCD, sex predominance, and typical VA in different diseases associated with VA/SCD

 

— presence of genetic risks; — trigger — physical and emotional stress;  — trigger — swimming, diving; — syncope during sleep; —trigger — a sharp sound; — trigger – physical stress

ACS — acute coronary syndrome; ARVC — arrhythmogenic right ventricular cardiomyopathy; BrS — Brugada syndrome; CAD — coronary artery disease; CPVT — catecholaminergic polymorphic ventricular tachycardia; DCM — dilated cardiomyopathy; HCM — hypertrophic cardiomyopathy; LQT — long QT syndrome; MVT — monomorphic ventricular tachycardia; PVT — polymorphic ventricular tachycardia; rTOF — repaired tetralogy of Fallot; SCD — sudden cardiac death; VA — ventricular arrhythmia

Рис. 2. Генетический риск желудочковой аритмии / внезапной сердечной смерти, типичные триггеры желудочковой аритмии / внезапной сердечной смерти, возраст при появлении желудочковой аритмии / внезапной сердечной смерти, преобладание пола и вариант типичной желудочковой аритмии при различных заболеваниях, связанных с желудочковой аритмией / внезапной сердечной смертью [2]

— наличие генетических рисков; — триггер — физическая и эмоциональная нагрузки; — триггер — плавание, ныряние; — синкопальные состояния во сне; — триггер — резкий звук; — триггер — физическая нагрузка ВСС — внезапная сердечная смерть; ЖА — желудочковые аритмии; МЖТ — мономорфная желудочковая тахикардия; ПЖТ — полиморфная желудочковая тахикардия

 

 

 

To reduce the number of monomorphic VTs, catheter ablation can be used in addition to drug therapy. However, the rate of recurrent VTs after catheterization procedures in patients with DCM is higher than that in patients with IHD, the VT-free survival 1 year after a catheter procedure in DCM is 40.5%, whereas in IHD, it is 57% [22]. Some patients require repeated procedures, after which the probability of the absence of recurrence of arrhythmia increases. When the arrhythmic focus is subepicardial, epicardial ablation is required in 27%–30% of the procedures [22, 23]. The outcome is particularly poor in patients with pathogenic LMNA mutations. Because of the deep transmural, anteroseptal location of the substrate, transcoronary ethanol ablation, bipolar ablation, and surgical ablation may be required [24–26].

The general recommendations for patients with LMNA mutations are presented in Table 5.

 

Table 5. General recommendations for patients with mutations in genes encoding lamin

Таблица 5. Общие рекомендации для пациентов с мутацией генов, кодирующих синтез ламинов

Note: DCM — dilated cardiomyopathy; HNDCM — hypokinetic nondilated cardiomyopathy; LMNA — nuclear lamin gene.

Примечание: ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; LMNA — ген ядерных ламинов.

 

Arrhythmogenic right ventricular cardiomyopathy (ACM)

ACM is characterized by the replacement of the myocardium with fibrous and fatty tissue [27]. Currently, it is more correct to talk about ACM of both ventricles [28]. The prevalence of ACM in the population ranges from 1:1000 to 1:5000 [29]. Most often, ACM is caused by pathogenic mutations in desmosomal genes (Dsc2, desmocollin-2; Dsg2, desmoglein-2; Dsp, desmoplakin; Рkg, plakoglobin; Pkp2, plakophilin-2) and less often in nondesmosomal genes. Similar to DCM, in ACM, some mutations are associated with a high risk of developing VA at a young age [30, 31]. The diagnosis of ACM is complex and requires searching and assessing certain criteria. Although the recommendations contain a reference in Guidelines 2022 to the publication of Corrado et al. (2020) [28], the criteria for diagnosing ACM are not the 2020 Padua criteria but the previous 2010 criteria [32]. As an advantage, the Padua criteria provide an algorithm for diagnosing not only the right ventricular but also the LV process. Figure 3 presents the ECG of our 16-year-old patient with arrhythmogenic cardiomyopathy. ECG was performed during sinus rhythm. At the beginning of the recording, the moment of the cessation of unstable polymorphic VT (three complexes) was recorded. In addition, frequent polymorphic single and paired premature ventricular complexes (PVC) of the bigeminy type were noted. The major Padua criterion for the diagnosis of right ventricular ACM was identified, namely, inverted T waves in right precordial leads V1, V2, and V3 in a patient with complete pubertal development, and the absence of complete right bundle branch block. In addition, minor Padua criteria were noted for the diagnosis of LV ACM, which are inverted T waves in left precordial leads V4–V6 in the absence of complete left bundle branch (LBB) block and low-amplitude QRS (< 0.5 mV peak-to-peak) in the limb leads to the absence of obesity, emphysema, and pericardial effusion.

 

Fig. 3. Electrocardiogram of a patient suffering from biventricular arrhythmogenic cardiomyopathy (explanation in the text)

Рис. 3. Электрокардиограмма пациента, страдающего бивентрикулярной аритмогенной кардиомиопатией (объяснение в тексте)

 

Figure 4 presents the ECG of one of the patients with right ventricular ACM during classical sustained VT, which is a major criteria for diagnosing right ventricular ACM —VT with QRS morphology similar to LBB block, causing the deviation of the electrical axis to the left upward (not from the right ventricle (RV) outflow tract, the focus is located in the area of the RV free wall).

 

Fig. 4. Electrocardiogram of a patient suffering from right ventricular arrhythmogenic cardiomyopathy, at the time of tipical ventricular tachycardia (explanation in text)

Рис. 4. Электрокардиограмма пациента, страдающего правожелудочковой аритмогенной кардиомиопатией, во время типичной желудочковой тахикардии (объяснение в тексте)

 

During the natural disease course in patients with ACM who have not been implanted with ICD, cardiac arrest occurs in 4.6%–6.1% of cases [33–36]. Because of the high incidence of VA and SCD in ACM, risk stratification of adverse arrhythmic events is required. In 16%–19% of cases, the indication for ICD is rapid VT (≥ 250 beats/min) or VF, which are considered surrogate markers of a potentially life-threatening event [37–40]. Recently, a risk model was developed to predict any persistent VA in ACM based on the analysis of the disease course of 528 patients with an established diagnosis of ACM and no history of VA. During model development, age, sex, arrhythmic syncope, nonsustained VT, number of ventricular PVC, number of leads with T-wave inversion, and RV EF (c-index 0.77) were collected [41]. Another model for predicting life-threatening VA was proposed based on the analysis of 864 patients with ACM, which included male sex, age, number of ventricular PVC within 24 h, and number of leads with T-wave inversion (c-index 0.74) as predictors [41]. However, validation studies are required before these risk models can be recommended for clinical use [2].

The recommendations for the diagnostics and management of patients with arrhythmogenic cardiomyopathy are presented in Table 6 [2].

 

Table 6. Recommendations for the diagnosis and management of patients suffering from arrhythmogenic cardiomyopathy

Таблица 6. Рекомендации по диагностике и ведению пациентов, страдающих аритмогенной кардиомиопатией

Note: ACM — arrhythmogenic cardiomyopathy; MRI — magnetic resonance imaging.

Примечание: АКМП — аритмогенная кардиомиопатия; МРТ — магнитно-резонансная томография.

 

The recommendations for the risk stratification and primary prevention of SCD are presented in Table 7 [2].

 

Table 7. Recommendations for risk stratification and primary prevention of sudden death in arrhythmogenic cardiomyopathy

Таблица 7. Рекомендации по стратификации риска и первичной профилактике внезапной смерт при аритмогенной кардиомиопатии

Note: ACM — arrhythmogenic cardiomyopathy; ICD — implantable cardioverter defibrillator; LV — left ventricle; RV — right ventricle. a Presyncope or palpitations indicating ventricular arrhythmias.

Примечание: АКМП — аритмогенная кардиомиопатия; ИКД — имплантируемый кардиовертер-дефибриллятор; ЛЖ — левый желудочек; ПЖ — правый желудочек. а Предобморочные состояния или учащенное сердцебиение, указывающее на желудочковые аритмии.

 

RV and LV dysfunctions are associated with high arrhythmic risk. The guidelines state that EF thresholds for indications for ICD implantation are difficult to define; however, even asymptomatic patients with severe RV dysfunction (right ventricular area fraction change ≤ 17% or RV EF ≤ 35%) should be advised to implant an ICD for the primary prevention of SCD. Similarly, patients with ACM with significant LV disease (LVEF ≤ 35%) are candidates for ICD implantation according to current ICD guidelines for DCM [2]. An ICD for the primary prevention of SCD should also be recommended in patients with symptomatic ACM (presyncope or palpitations suggestive of VA) and moderate RV dysfunction (EF of 40%–35%) and/or moderate LV dysfunction (EF of 45%–35%) [2].

The recommendations for the secondary prevention of sudden cardiac death and treatment of ventricular arrhythmias are presented in Table 8 [2].

 

Table 8. Recommendations for secondary prevention of sudden death and treatment of ventricular arrhythmias in arrhythmogenic cardiomyopathy

Таблица 8. Рекомендации по вторичной профилактике внезапной смерти и лечению желудочковых аритмий

Note: ACM — arrhythmogenic cardiomyopathy; ICD — implantable cardioverter defibrillator.

Примечание: АКМП — аритмогенная кардиомиопатия; ИКД — имплантируемый кардиовертер-дефибриллятор.

 

Beta-blockers are recommended as first-line therapy in both symptomatic and asymptomatic cases, although this is not supported by clinical trial data [2]. Sotalol is notably effective in preventing the reproducibility of VT during electrophysiological tests [43]; however, it does not suppress clinically significant arrhythmias in real life [43, 44]. Treatment with amiodarone or class 1 drugs is associated with a trend toward lower recurrent VT rates compared with sotalol [45]. The addition of flecainide to beta-blockers or sotalol was useful in a small group of patients [46]. Note that first-class drugs are contraindicated in patients with reduced EF. Catheter ablation may be an alternative to drug therapy. When choosing a therapeutic strategy, potential risks, drug side effects, and patient preferences must be considered [47].

The recommendations for managing relatives of patients with ACM are presented in Table 9 [2].

 

Table 9. Recommendations for the management of relatives of a patient with arrhythmogenic cardiomyopathy

Таблица 9. Рекомендация по ведению родственников больного аритмогенной кардиомиопатией

Note: ACM — arrhythmogenic cardiomyopathy.

Примечание: АКМП — аритмогенная кардиомиопатия.

 

Hypertrophic cardiomyopathy (HCM)

HCM is a disease characterized by an increase in LV wall thickness in the absence of pathological conditions associated with myocardial load, such as arterial hypertension or valvular diseases [1, 48].

Mutations in genes encoding the synthesis of sarcomeric proteins (myosin binding protein C [MYBPC3], myosin heavy chains [MYH7], cardiac troponin T [TNNT2], cardiac troponin I [TNNI3], and α-tropomyosin [TPM1], essential and regulatory light chains myosin [MYL3 and MYL2], and actin [ACTS]) are detected in 30%–60% of patients, most often in those with HCM diagnosed at a young age or with a family history of HCM [49, 50]. The recommendations emphasize the need for genetic testing of probands and screening of first-degree relatives.

In adults, the estimated prevalence of HCM is 1 per 500 populations [51]. Among children, the rate is much lower.

According to previous studies, annual mortality in HCM ranges from 0.5% to 2% [2, 48, 52]. Most HCM-associated deaths in patients aged up to 60 years occur suddenly, whereas older patients more often die from stroke, heart failure, obstruction, or supraventricular arrhythmias. The annual incidence of SCD or related ICD activation is approximately 0.8%; however, it largely depends on the age and risk profile of a patient [53–56]. SCD can also be triggered by exercise and participation in competitive sports [57].

Planning a management strategy for a patient with HCM begins with stratifying the risk of sudden cardiac death. A 5-year risk stratification scale for SCD has been developed based on seven factors, namely, age, LV wall thickness, left atrial (LA) dimension, LV outflow tract (LVOT) obstruction, nonsustained VT, unexplained syncope, and family history of SCD (HCM Risk-SCD: https://doc2do.com/hcm/webHCM.html) [2]. The calculator is not intended for evaluating professional athletes or persons with metabolic and infiltrative diseases, after myectomy or ethanol septal ablation. To stratify the risk of SCD in children (1–16 years), a special pediatric HCM risk-kids model was recently developed, including unexplained syncope, maximum LV wall thickness, LA diameter, LVOT gradient, and nonsustained VT (https://hcmriskkids.org) [2, 58].

The 2022 guidelines emphasize additional factors that are not reflected in the SCD risk model that should be considered in patients at intermediate or low estimated risk. Important additional factors include LV systolic dysfunction, aneurysm in the LV apex, extensive areas of late signal enhancement on contrast-enhanced cardiac MRI corresponding to fibrosis, and presence of single or multiple sarcomeric mutations [50, 59–64]. The identification of large areas of late MRI signal enhancement (≥15% of the LV mass) has been proposed as a good predictor of SCD. However, fibrosis thresholds are sometimes difficult to use because the quantification of late signal enhancement depends on the method by which the MR image was acquired and the type and amount of contrast used [2].

Because new risk factors may emerge in a patient’s life, periodic risk reassessment is an essential part of long-term patient follow-up.

The advisability of the electrophysiological test to induce VA in HCM, according to the recommendations, is controversial because according to the literature, rhythm disturbances obtained with the electrophysiological test are considered nonspecific, although there are other points of view [65, 66].

The recommendations for risk stratification, prevention of sudden cardiac death, and treatment of ventricular arrhythmias in hypertrophic cardiomyopathy are presented in Table 10 [2].

 

Table 10. Recommendations for risk stratification, prevention of sudden cardiac death, and treatment of ventricular arrhythmias in hypertrophic cardiomyopathy

Таблица 10. Рекомендации по стратификации риска, профилактике внезапной сердечной смерти и лечению желудочковых аритмий при гипертрофической кардиомиопатии

Note: SCD — sudden cardiac death; HCM — hypertrophic cardiomyopathy; VA — ventricular arrhythmias; VT — ventricular tachycardia; ICD — implantable cardioverter defirillator; LV — left ventricle; MRI — magnetic resonance imaging; EF — ejection fraction; VF — ventricular fibrillation.

Примечание: ВСС — внезапная сердечная смерть; ГКМП — гипертрофическая кардиомиопатия; ЖА — желудочковые аритмии; ЖТ — желудочковая тахикардия; ИКД — имплантируемый кардиовертер-дефириллятор; ЛЖ — левый желудочек; МРТ — магнитно-резонансная томография; ФВ — фракция выброса; ФЖ — фибрилляция желудочков.

 

Patients who experience cardiac arrest due to VT/VF or hemodynamically intolerable VT are at high risk of life-threatening VA and require an ICD for secondary prevention of SCD [2, 48, 67–69]. Following ICD implantation for primary or secondary prevention of SCD, the most common documented subtype of VA is sustained monomorphic VT, in which ATP is successful in 69%–76.5% of all episodes. In this regard, during implantation, preference should be given to ICDs with ATP functionality [70–72]. No randomized clinical or cohort studies have confirmed the important role of medications in preventing SCD in HCM [2, 48, 73]. Amiodarone can reduce the number of VA; however, data on its effectiveness in preventing SCD are inconsistent [73, 74]. Disopyramide and beta-blockers are effective in controlling symptoms and LVOT obstruction; however, no evidence shows that they reduce the risk of SCD [2, 48]. Similarly, surgical myectomy or ethanol ablation is not recommended to reduce the SCD risk in patients with LVOT obstruction [2, 48]. Despite the lack of clear data on the efficiency of antiarrhythmic drugs, beta-blockers, amiodarone, sotalol, and sodium channel blockers are prescribed to patients with HCM and symptomatic VAs [2]. Catheter ablation may also be used in carefully selected patients with HCM and sustained monomorphic VT for whom antiarrhythmic drugs are ineffective, contraindicated, or intolerable. The recommendations emphasize that the results after ablation for HCM are worse than those for other diseases of nonischemic etiology [75–77].

Left ventricular non-compaction (LVNC)

Since 1995, along with HCM, DCM, RCM, and ACM, a group of “unclassified” cardiomyopathies has been identified, including LVNC or noncompact cardiomyopathy (NCM) and Takotsubo syndrome. In the 2023 European Society of Cardiology guidelines on cardiomyopathies, the concept of “unclassified” cardiomyopathies was abolished and replaced by “syndromes associated with cardiomyopathic phenotypes” [15]. Taking into account the change in the approach to the classification of cardiomyopathies, the 2023 recommendations propose using the term “left ventricle hypertrabecularity” instead of LVNC.

In this article, we use the term LVNC because this is the term used in the 2022 European guidelines for the treatment of ventricular arrhythmias and the prevention of SCD. LVNC includes a heterogeneous group of phenotypically different diseases characterized by specific changes in the LV myocardium and sometimes RV myocardium [2, 78–80]. A structural pathology common to all phenotypes is abnormal trabeculae in the LV/RV or both ventricles, most often in the apical region [78–80]. Figure 5 presents an echocardiogram of one of our patients.

 

Fig. 5. Echocardiogram of a patient with left ventricular hypertrabeculation. Apical 4-chamber view. Noteworthy is the dilatation of the left ventricle and pronounced trabecularity in the area at the apex

Рис. 5. Эхокардиограмма пациента, имеющего гипертрабекулярность миокарда левого желудочка. Верхушечная 4-камерная позиция. Обращают на себя внимание дилатация левого желудочка и выраженная трабекулярность в области верхушки

 

LVNC may include LV dilatation, LV hypertrophy, systolic dysfunction, diastolic dysfunction, or both, and it may be associated with various congenital heart defects [78–80]. Clinically, the disease manifests as CHF, life-threatening VAs, complete AV block, and bundle branch blocks. Up to nine variants of the disease, hemodynamically and clinically occurring differently [79, 80]:

1) Isolated or benign form: LVNC with structural changes, absent hemodynamic disturbances, and clinical signs (registered in athletes and pregnant women);

2) Arrhythmogenic form: the main clinical manifestation is cardiac arrhythmia, primarily VA;

3) Dilated form: in addition to characteristic morphological changes, there is dilation and decreased contractility of the LV;

4) Hypertrophic form, with no pronounced dilatation, but with myocardial hypertrophy, primarily thickening of the myocardium, which is not involved in the noncompaction process;

5) “Mixed” form of non-compaction;

6) Restrictive form, in which severe diastolic dysfunction predominates;

7) Biventricular form of the non-compaction;

8) Excessive trabecularity of the RV with a normal structure of the LV;

9) Combination of non-compaction with congenital heart defects.

The association of the disease with genetic abnormalities is detected in 30%–50% of patients. Several genes encoding sarcomeric or cytoskeletal proteins have been identified; however, the identified genetic abnormalities occur not only in NCM but also in other cardiomyopathies, including Barth syndrome [79, 80].

Diagnostics of non-compaction are difficult; various proposed diagnostic criteria have not yet been validated, and none of them are given as diagnostic criteria in the recommendations. Cardiovascular mortality in patients with NCM is similar to that in patients with DCM [81]. The detection of focal fibrosis on contrast-enhanced MRI is associated with serious cardiovascular events, including arrhythmic events [82]. However, the risk stratification criteria for SCD in NCM have not yet been developed. Thus, in the future, combining MRI criteria with genetic testing data may overcome the current uncertainty regarding risk stratification for adverse events in NCM [2, 83]. In the meantime, when deciding on ICD implantation for diagnosed NCM, the criteria recommended for DCM/HNDCM should be used. The recommendations for ICD implantation for LVNC are presented in Table 11 [2].

 

Table 11. Recommendations for cardioverter defibrillator implantation in left ventricular non-compaction

Таблица 11. Рекомендации по имплантации кардиовертера-дефибриллятора при некомпактном миокарде левого желудочка

Note: SCD — sudden cardiac death; DCM — dilated cardiomyopathy; HNDCM — hypokinetic nondilated cardiomyopathy; ICD — implantable cardioverter defibrillator, MRI — magnetic resonance imaging.

Примечание: ВСС — внезапная сердечная смерть; ДКМП — дилатационная кардиомиопатия; ГНДКМП — гипокинетическая недилатационная кардиомиопатия; ИКД — имплантируемый кардиовертер-дефибриллятор: МРТ — магнитно-резонансная томография.

 

Restrictive cardiomyopathy (RCM)

The RCM phenotype is rare and can result from various causes, including genetically determined and acquired interstitial fibrosis, infiltrative disorders (e.g., amyloidosis), and storage diseases (e.g., Anderson–Fabry disease). Their identification is crucial for the choice of therapy because of certain diseases in which in the clinical course restrictive hemodynamics comes to the fore, and there is a specific disease-modifying therapy. Heart failure is a major symptom of any type of RCM. Depending on the phenotype, atrial or ventricular arrhythmias may predominate, including fatal ones. For example, in Fabry disease, the most reported cardiovascular deaths were classified as SCD [84]. Because RCM is the rarest among all CMPs, large randomized studies of this pathology are not yet available. The retrospective, observational nature of most minor, single-center studies and the low absolute number of deaths due to cardiovascular disease and SCD in these studies do not currently allow ICDs to be recommended for the primary prevention of SCD in RCM. The guidelines provide advice only ICD for cardiac amyloidosis (Table 12) [2]. Currently, an ICD should be recommended for patients with amyloid CMP and hemodynamically intolerable VT after careful consideration of the competing risks of nonarrhythmic and noncardiac death.

 

Table 12. Recommendations for implantation of a cardioverter-defibrillator in patients with cardiac amyloidosis

Таблица 12. Рекомендации по имплантации кардиовертера-дефибриллятора пациентам, страдающим амилоидозом сердца

Note: VT — ventricular tachycardia; ICD — implantable cardioverter defibrillator; CMP — cardiomyopathy.

Примечание: ЖТ — желудочковая тахикардия; ИКД — имплантируемый кардиовертер-дефибриллятор; КМП — кардиомиопатия.

 

Recommendations devoted to the urgent issues of determining CMP, diagnostics, risk stratification of SCD, and treatment of VA in CMPs are of great practical interest because fatal ventricular arrhythmias are a common complication of all CMPs.

ADDITIONAL INFORMATION

Competing interests. The authors declare that they have no competing interests.

Funding source. This study was not supported by any external sources of funding.

×

About the authors

Tatiana N. Novikova

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: novikova-tn@mail.ru
ORCID iD: 0000-0003-4655-0297
SPIN-code: 3401-0329

Cand. Sci. (Med.), associate professor of the Department of Hospital Therapy and Cardiology named after M.S. Kushakovskiy. North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg

Russian Federation, Saint Petersburg

Fatima I. Bitakova

North-Western State Medical University named after I.I. Mechnikov

Email: Fatima.Bitakova@szgmu.ru
ORCID iD: 0000-0001-6637-8266
SPIN-code: 8624-7193

Cand. Sci. (Med.), associate professor

Russian Federation, Saint Petersburg

Valeria S. Ignateva

North-Western State Medical University named after I.I. Mechnikov

Email: valeria2311@bk.ru
ORCID iD: 0009-0008-9446-9374

6th year student

Russian Federation, Saint Petersburg

Vladimir I. Novikov

North-Western State Medical University named after I.I. Mechnikov

Email: novikov-vi@mail.ru
ORCID iD: 0000-0002-2493-6300
SPIN-code: 6909-3377

Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Sergey A. Sayganov

North-Western State Medical University named after I.I. Mechnikov

Email: ssayganov@gmail.com
ORCID iD: 0000-0001-8325-1937
SPIN-code: 2174-6400

Dr. Sci. (Med.), professor, rector

Russian Federation, Saint Petersburg

Vladislava A. Shcherbakova

North-Western State Medical University named after I.I. Mechnikov

Email: shcher.vl@yandex.ru

6th year student

Russian Federation, Saint Petersburg

References

  1. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal. 2008;29:270–276. DOI: https://doi.org/10.1093/eurheartj/ehm342
  2. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal. 2022;00:1–130. DOI: https://doi.org/10.1093/eurheartj/ehac262
  3. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. The New England Journal of Medicine. 2016;375:1221–1230. DOI: https://doi.org/10.1056/NEJMoa1608029
  4. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390:400–414. DOI: https://doi.org/10.1016/S0140-6736(16)31713-5
  5. Beggs SAS., Jhund PS, Jackson CE, et al. Non-ischaemic cardiomyopathy, sudden death and implantable defibrillators: a review and meta-analysis. Heart. 2018;104:144–150. DOI: https://doi.org/10.1136/heartjnl-2016-310850
  6. Codd MB, Sugrue DD, Gersh BJ, Melton LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation. 1989;80:564–572. DOI: https://doi.org/10.1161/01.cir.80.3.564
  7. Manolio TA, Baughman KL, Rodeheffer R, et al. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop. Americal Journal of Cardiology. 1992;69:1458–1466. DOI: https://doi.org/10.1016/0002-9149(92)90901-a
  8. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. European Heart Journal. 2016;37(23):1850–1858. DOI: https://doi.org/10.1093/eurheartj/ehv727
  9. Zhang X-L, Xie J, Lan R-F, et al. Genetic Basis and Genotype–Phenotype Correlations in Han Chinese Patients with Idiopathic Dilated Cardiomyopathy. Scientific Reports. 2020;10:2226. DOI: https://doi.org/10.1038/s41598-020-58984-7.
  10. Ader F, De Groote P, Réant P, et al. FLNC pathogenic variants in patients with cardiomyopathies: prevalence and genotype-phenotype correlations. Clinical Genetics. 2019;96:317–329. DOI: https://doi.org/10.1111/cge.13594
  11. Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clinical Research in Cardiology. 2017;106:127–139. DOI: https://doi.org/10.1007/s00392-016-1033-6
  12. Ortiz-Genga MF, Cuenca S, Dal Ferro M, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. Journal of the American College of Cardiology. 2016;68:2440–2451. DOI: https://doi.org/10.1016/j.jacc.2016.09.927
  13. van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation. 2018;138:1330–1342. DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.031947
  14. Gigli M, Merlo M, Graw SL, et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. Journal of the American College of Cardiology. 2019;74:1480–1490. DOI: https://doi.org/10.1016/j.jacc.2019.06.072
  15. Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies. European Heart Journal. 2023;44(37):1–124. DOI: https://doi.org/10.1093/eurheartj/ehad194
  16. Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. European Heart Journal–Cardiovascular Imaging. 2015;16:14–22. DOI: https://doi.org/10.1093/ehjci/jeu182
  17. Olivas-Chacon CI, Mullins C, Stewart K, et al. Magnetic Resonance Imaging of Non-ischemic Cardiomyopathies: A Pictorial Essay. Pictorial Essay. 2015;5:37. DOI: https://doi.org/10.4103/2156-7514.159564
  18. Di Marco A, Anguera I, Schmitt M, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC: Heart Fail. 2017;5:28–38. DOI: https://doi.org/10.1016/j.jchf.2016.09.017
  19. Klem I, Klein M, Khan M, et al. Relationship of LVEF and myocardial scar to long-term mortality risk and mode of death in patients with nonischemic cardiomyopathy. Circulation. 2021:143:1343–1358. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.048477
  20. Goidescu CM. Dilated cardiomyopathy produced by lamin A/C gene mutations. Cluju Med. 2013;86(4):309–312.
  21. Connolly SJ, Dorian P, Roberts RS, et al. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC Study: a randomized trial. JAMA. 2006;295:165–171. DOI: https://doi.org/10.1001/jama.295.2.165
  22. Dinov B, Fiedler L, Schönbauer R, et al. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation. 2014;129: 728–736. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.003063
  23. Muser D, Santangeli P, Castro SA, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic dilated cardiomyopathy. Circulation Arrhythmia and Electrophysiology. 2016;9:004328. DOI: https://doi.org/10.1161/CIRCEP.116.004328
  24. Ebert M, Richter S, Dinov B, et al. Evaluation and management of ventricular tachycardia in patients with dilated cardiomyopathy. Heart Rhythm. 2019;16:624–631. DOI: https://doi.org/10.1016/j.hrthm.2018.10.028
  25. Kumar S, Androulakis AFA, Sellal J-M, et al. Multicenter experience with catheter ablation for ventricular tachycardia in lamin A/C cardiomyopathy. Circulation Arrhythmia and Electrophysiology. 2016;9:004357. DOI: https://doi.org/ 10.1161/CIRCEP.116.004357
  26. Oloriz T, Silberbauer J, Maccabelli G, et al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circulation Arrhythmia and Electrophysiology. 2014;7:414–423. DOI: https://doi.org/10.1161/CIRCEP.114.001568
  27. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. The New England Journal of Medicine. 2017;376:1489–1490. DOI: https://doi.org/10.1056/NEJMra1509267
  28. Corrado D, Marra MP, Zorzi A, et al. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria. International Journal of Cardiology. 2020;319:106–114. DOI: https://doi.org/10.1016/j.ijcard.2020.06.005.
  29. Mazzanti A, Ng K, Faragli A, et al. Arrhythmogenic right ventricular cardiomyopathy: clinical course and predictors of arrhythmic risk. Journal of the American College of Cardiology. 2016;68:2540–2550. DOI: https://doi.org/10.1016/j.jacc.2016.09.951
  30. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. European Heart Journal. 2015;36:847–855. DOI: https://doi.org/10.1093/eurheartj/ehu509
  31. Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts life time arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circulation Cardiovascular Genetics. 2013;6: 533–542. DOI: https://doi.org/10.1161/CIRCGENETICS.113.000288
  32. Novikova TN, Novikov VI, Sayganov SA, Shcherbakova VA. 2022 Esc guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: what is new? Cardiac Arrhythmias. 2022;2(3):7–30. DOI.org/10.17816/cardar110961
  33. Hulot J-S, Jouven X, Empana J-P, et al. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110:1879–1884. DOI: https://doi.org/10.1161/01.CIR.0000143375.93288.82
  34. Wang W, Cadrin-Tourigny J, Bhonsale A, et al. Arrhythmic outcome of arrhythmogenic right ventricular cardiomyopathy patients without implantable defibrillators. Journal of Cardiovascular Electrophysiology. 2018;29:1396–1402. DOI: https://doi.org/10.1111/jce.13668
  35. Pinamonti ., Dragos AM, Pyxaras SA, et al. Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results froma 10-year registry. European Heart Journal. 2011;32:1105–1113. DOI: https://doi.org/10.1093/eurheartj/ehr040
  36. Brun F, Groeneweg JA, Gear K, et al. Risk stratification in arrhythmic right ventricular cardiomyopathy without implantable cardioverter-defibrillators. JACC Clinical Electrophysiology. 2016;2:558–564. DOI: https://doi.org/10.1016/j.jacep.2016.03.015
  37. Bhonsale A, James CA, Tichnell C, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. Journal of the American College of Cardiology. 2011;58:1485–1496. DOI: https://doi.org/10.1016/j.jacc.2011.06.043
  38. Corrado D, Calkins H, Link MS, et al. Prophylactic implantable defibrillator in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia and no prior ventricular fibrillation or sustained ventricular tachycardia. Circulation. 2010;122:1144–1152. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.913871
  39. Platonov PG, Haugaa KH, Bundgaard H, et al. Primary prevention of sudden cardiac death with implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular cardiomyopathy. American Journal of Cardiology. 2019;123: 1156–1162. DOI: https://doi.org/10.1016/j.amjcard.2018.12.049
  40. Link MS, Laidlaw D, Polonsky B, et al. Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment. Journal of the American College of Cardiology. 2014;64:119–125. DOI: https://doi.org/10.1016/j.jacc.2014.04.035
  41. Cadrin-Tourigny J, Bosman LP, Nozza A, et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. European Heart Journal. 2019;40:1850–1858. DOI: https://doi.org/10.1093/eurheartj/ehz103
  42. Cadrin-Tourigny J, Bosman LP, Wang W, et al. Sudden cardiac death prediction in arrhythmogenic right ventricular cardiomyopathy: a multinational collaboration. Circulation Arrhythmia and Electrophysiology. 2021;14:008509. DOI: https://doi.org/10.1161/CIRCEP.120.008509
  43. Wichter T, Borggrefe M, Haverkamp W, et al. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease. Results in patients with inducible and noninducible ventricular tachycardia. Circulation. 1992;86:29–37. DOI: https://doi.org/10.1161/01.cir.86.1.29
  44. Marcus GM, Glidden DV, Polonsky B, et al. Efficacy of antiarrhythmic drugs in arrhythmogenic right ventricular cardiomyopathy: a report from the North American ARVC Registry. Journal of the American College of Cardiology. 2009;54:609–615. DOI: https://doi.org/10.1016/j.jacc.2009.04.052
  45. Mahida S, Venlet J, Saguner AM, et al. Ablation compared with drug therapy for recurrent ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy: results from a multicenter study. Heart Rhythm. 2019;16:536–543. DOI: https://doi.org/10.1016/j.hrthm.2018.10.016
  46. Ermakov S, Gerstenfeld EP, Svetlichnaya Y, Scheinman MM. Use of flecainide in combination antiarrhythmic therapy in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2017;14:564–569. DOI: https://doi.org/10.1016/j.hrthm.2016.12.010
  47. Santangeli P, Zado ES, Supple GE, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circulation Arrhythmia and Electrophysiology. 2015;8:1413–1421. DOI: https://doi.org/10.1161/CIRCEP.115.003562
  48. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology/ American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142:533–557. DOI: https://doi.org/10.1161/CIR.0000000000000938
  49. Heliö T, Elliott P, Koskenvuo JW, et al. ESC EORP cardiomyopathy registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Failure. 2020;7:3013–3021. DOI: https://doi.org/10.1002/ehf2.12925
  50. Ho CY, Day SM, Ashley EA, et al. Genotype and life time burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation. 2018;138: 1387–1398. DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.033200
  51. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2015;65:1249–1254. DOI: https://doi.org/10.1016/j.jacc.2015.01.019
  52. Maron BJ, Rowin EJ, Casey SA, et al. Hypertrophic cardiomyopathy in adulthood as sociated with low cardiovascular mortality with contemporary management strategies. Journal of the American College of Cardiology. 2015;65:1915–1928. DOI: https://doi.org/10.1016/j.jacc.2015.02.061
  53. O’Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCMrisk-SCD). European Heart Journal. 2014;35:2010–2020. DOI: https://doi.org/10.1093/eurheartj/eht439
  54. O’Mahony C, Jichi F, Ommen SR, et al. International External Validation Study of the 2014 European Society of Cardiology Guidelines on Sudden Cardiac Death Prevention in Hypertrophic Cardiomyopathy (EVIDENCE-HCM). Circulation. 2018;137:1015–1023. DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.030437
  55. Vriesendorp PA, Schinkel AFL, Liebregts M, et al. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary revention of sudden cardiac death in hypertrophic cardiomyopathy. Circulation Arrhythmia and Electrophysiology. 2015;8:829–835. DOI: https://doi.org/10.1161/CIRCEP.114.002553
  56. Lorenzini M, Anastasiou Z, O’Mahony C, et al. Mortality among referral patients with hypertrophic cardiomyopathy vs the general European population. JAMA Cardiology. 2020;5:73–80. DOI: https://doi.org/10.1001/jamacardio.2019.4534
  57. Gimeno JR, Tomé-Esteban M, Lofiego C, et al. Exercise-induced ventricular arrhythmias and risk of sudden cardiac death in patients with hypertrophic cardiomyopathy. European Heart Journal. 200;30:2599–2605. DOI: https://doi.org/10.1093/eurheartj/ehp327
  58. Norrish G, Qu C, Field E, et al. External validation of the HCM Risk-Kids model for predicting sudden cardiac death in childhood hypertrophic cardiomyopathy. European Journal of Preventive Cardiology. 2022;29:678–686. DOI: https://doi.org/10.1093/eurjpc/zwab181
  59. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–495. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.007094
  60. He D, Ye M, Zhang L, Jiang B. Prognostic significance of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy. Heart Lung. 2018;47:122–126. DOI: https://doi.org/10.1016/j.hrtlng.2017.10.008
  61. Rowin EJ, Maron BJ, Carrick RT, et al. Outcomes in patients with hypertrophic cardiomyopathy and left ventricular systolic dysfunction. Journal of the American College of Cardiology. 2020;75:3033–3043. DOI: https://doi.org/10.1016/j.jacc.2020.04.045
  62. Rowin EJ, Maron BJ, Haas TS, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. Journal of the American College of Cardiology. 2017;69:761–773. DOI: https://doi.org/10.1016/j.jacc.2016.11.063
  63. Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997;96:2987–2991. DOI: https://doi.org/10.1161/01.cir.96.9.2987
  64. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. Journal of the American College of Cardiology. 2000;36:2212–2218. DOI: https://doi.org/10.1016/s0735-1097(00)01003-2
  65. Behr ER, Elliott P, McKenna WJ. Role of invasive EP testing in the evaluation and management of hypertrophic cardiomyopathy. Cardiac Electrophysiology Review. 2002;6:482–486. DOI: https://doi.org/10.1023/a:1021161114347
  66. Gatzoulis KA, Georgopoulos S, Antoniou C-K, et al. Programmed ventricular stimulation predicts arrhythmic events and survival in hypertrophic cardiomyopathy. International Journal of Cardiology. 2018;254:175–181. DOI: https://doi.org/10.1016/j.ijcard.2017.10.033
  67. Elliott PM, Sharma S, Varnava A, et al. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 1999;33:1596–1601. DOI: https://doi.org/10.1016/s0735-1097(99)00056-x
  68. Cecchi F, Maron BJ, Epstein SE. Long-term outcome of patients with hypertrophic cardiomyopathy successfully resuscitated after cardiac arrest. Journal of the American College of Cardiology. 1989; 13:1283–1288. DOI: https://doi.org/10.1016/0735-1097(89)90302-1
  69. Maron BJ, Spirito P, Shen W-K, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA. 2007;298:405–412. DOI: https://doi.org/10.1001/jama.298.4.405
  70. Link MS, Bockstall K, Weinstock J, et al. Ventricular tachyarrhythmias in patients with hypertrophic cardiomyopathy and defibrillators: triggers, treatment, and implications. Journal of Cardiovascular Electrophysiology. 2017;28:531–537. DOI: https://doi.org/10.1111/jce.13194
  71. Dallaglio PD, DiMarco A, MorenoWeidmann Z, et al. Antitachycardia pacing for shock prevention in patients with hypertrophic cardiomyopathy and ventricular tachycardia. Heart Rhythm. 2020;17:1084–1091. DOI: https://doi.org/10.1016/j.hrthm.2020.02.024
  72. Adduci C, Semprini L, Palano F, et al. Safety and efficacy of anti-tachycardia pacing in patients with hypertrophic cardiomyopathy implanted with an ICD. Pacing and Clinical Electrophysiology. 2019;42:610–616. DOI: https://doi.org/10.1111/pace.13665
  73. Melacini P, Maron BJ, Bobbo F, et al. Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy. Heart. 2007;93:708–710. DOI: https://doi.org/10.1136/hrt.2006.099416
  74. McKenna WJ, Oakley CM, Krikler DM, Goodwin JF. Improved survival with amiodarone in patients with hypertrophic cardiomyopathy and ventricular tachycardia. British Heart Journal. 1985;53:412–416. DOI: https://doi.org/10.1136/hrt.53.4.412
  75. Vaseghi M, Hu TY, Tung R, et al. Outcomes of catheter ablation of ventricular tachycardia based on etiology in nonischemic heart disease: an international ventricular tachycardia ablation center collaborative study. JACC Clinical Electrophysiology. 2018;4: 1141–1150. DOI: https://doi.org/10.1016/j.jacep.2018.05.007
  76. Igarashi M, Nogami A, Kurosaki K, et al. Radiofrequency catheter ablation of ventricular tachycardia in patients with hypertrophic cardiomyopathy and apical aneurysm. JACC Clinical Electrophysiology. 2018;4:339–350. DOI: https://doi.org/10.1016/j.jacep.2017.12.020
  77. Dukkipati SR, d’Avila A, Soejima K, et al. Long-term outcomes of combined epicardial and endocardial ablation of monomorphic ventricular tachycardia related to hypertrophic cardiomyopathy. Circulation Arrhythmia and Electrophysiology. 2011;4:185–194. DOI: https://doi.org/10.1161/CIRCEP.110.957290
  78. Novikov VI, Novikova TN. Cardiomyopathy. Moscow: MEDpress-inform 2021;112 (In Russ.)
  79. Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386(9995):813-25. DOI: https://doi.org/10.1016/S0140-6736(14)61282-4.
  80. Gerecke BJ, Engberding R. Noncompaction Cardiomyopathy – History and Current Knowledge for Clinical Practice. Journal of Clinical Medicine. 2021;10(11):2457. DOI: https://doi.org/10.3390/jcm10112457.
  81. Aung N, Doimo S, Ricci F, et al. Prognostic significance of left ventricular noncompaction: systematic review and meta-analysis of observational studies. Circulation Cardiovascular Imaging. 2020;13:009712. DOI: https://doi.org/10.1161/CIRCIMAGING.119.009712
  82. Grigoratos C, Barison A, Ivanov A, et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovascular Imaging. 2019;12:2141–2151. DOI: https://doi.org/10.1016/j.jcmg.2018.12.029
  83. Richard P, Ader F, Roux M, et al. Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large genetic heterogeneity. Clinical Genetics. 2019;95:356–367. DOI: https://doi.org/10.1111/cge.13484
  84. Baig S, Edward NC, Kotecha D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice. Europace. 2018;20:153–161. DOI: https://doi.org/10.1093/europace/eux261

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm for risk stratification and primary prevention of sudden cardiac death in patients with dilated cardiomyopathy/hypokinetic non-dilated cardiomyopathy [2] AV — atrioventricular; CMR — cardiac magnetic resonance; DCM — dilated cardiomyopathy; HNDCM — hypokinetic non-dilated cardiomyopathy; ICD — implantable cardioverter defibrillator; ILR — implantable loop recorder; LMNA — nuclear lamin gene; LVEF — left ventricular ejection fraction; N — no; NSVT — non-sustained ventricular tachycardia; PES, programmed electrical stimulation; SCD — sudden cardiac death; SMVT — sustained monomorphic ventricular tachycardia; VA — ventricular arrhythmias; Y — yes a Risk factors: unexplained syncope, pathogenic variants in PLN, FLNC, or RBM20, LGE on CMR, inducible SMVT at PES. b The 2018 ESC Guidelines for the diagnosis and management of syncope

Download (1MB)
3. Fig. 2. Genetic risk for VA/SCD, typical triggers for VA/SCD, age at presentation with VA/SCD, sex predominance, and typical VA in different diseases associated with VA/SCD — presence of genetic risks; — trigger — physical and emotional stress; — trigger — swimming, diving; — syncope during sleep; —trigger — a sharp sound; — trigger – physical stress ACS — acute coronary syndrome; ARVC — arrhythmogenic right ventricular cardiomyopathy; BrS — Brugada syndrome; CAD — coronary artery disease; CPVT — catecholaminergic polymorphic ventricular tachycardia; DCM — dilated cardiomyopathy; HCM — hypertrophic cardiomyopathy; LQT — long QT syndrome; MVT — monomorphic ventricular tachycardia; PVT — polymorphic ventricular tachycardia; rTOF — repaired tetralogy of Fallot; SCD — sudden cardiac death; VA — ventricular arrhythmia

Download (514KB)
4. Fig. 3. Electrocardiogram of a patient suffering from biventricular arrhythmogenic cardiomyopathy (explanation in the text)

Download (888KB)
5. Fig. 4. Electrocardiogram of a patient suffering from right ventricular arrhythmogenic cardiomyopathy, at the time of tipical ventricular tachycardia (explanation in text)

Download (1MB)
6. Fig. 5. Echocardiogram of a patient with left ventricular hypertrabeculation. Apical 4-chamber view. Noteworthy is the dilatation of the left ventricle and pronounced trabecularity in the area at the apex

Download (401KB)
7. Table 1. Recommendations for genetic testing for dilated/hypokinetic nondilated cardiomyopath

Download (386KB)
8. Table 2. Recommendations for the examination of patients suffering from dilated/hypokinetic non-dilated cardiomyopathy and their relatives

Download (532KB)
9. Table 3. Recommendations for the primary prevention of sudden cardiac death in patients suffering from dilated/hypokinetic nondilated cardiomyopathy

Download (524KB)
10. Table 4. Recommendations for secondary prevention of sudden cardiac death in patients suffering from dilated/hypokinetic nondilated cardiomyopathy

Download (642KB)
11. Table 5. General recommendations for patients with mutations in genes encoding lamin

Download (127KB)
12. Table 6. Recommendations for the diagnosis and management of patients suffering from arrhythmogenic cardiomyopathy

Download (371KB)
13. Table 7. Recommendations for risk stratification and primary prevention of sudden death in arrhythmogenic cardiomyopathy

Download (452KB)
14. Table 8. Recommendations for secondary prevention of sudden death and treatment of ventricular arrhythmias in arrhythmogenic cardiomyopathy

Download (673KB)
15. Table 9. Recommendations for the management of relatives of a patient with arrhythmogenic cardiomyopathy

Download (121KB)
16. Table 10. Recommendations for risk stratification, prevention of sudden cardiac death, and treatment of ventricular arrhythmias in hypertrophic cardiomyopathy

Download (1MB)
17. Table 11. Recommendations for cardioverter defibrillator implantation in left ventricular non-compaction

Download (181KB)
18. Table 12. Recommendations for implantation of a cardioverter-defibrillator in patients with cardiac amyloidosis

Download (145KB)
19. Rice. 2 application 1

Download (1KB)
20. Rice. 2 application 2

Download (1KB)
21. Rice. 2 application 3

Download (1KB)
22. Rice. 2 application 4

Download (1KB)
23. Rice. 2 application 5

Download (1KB)
24. Rice. 2 appendix 6

Download (1KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 79865 от 18.12.2020. 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies