Signatures of selection in the genome of Tsarskoye Selo chicken population emerging as an individual breed
- Authors: Shcherbakov Y.S.1, Nikolaeva O.A.1, Vakhrameev A.B.1, Azovtseva A.I.1, Dementieva N.V.1
-
Affiliations:
- Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
- Section: Genetic basis of ecosystems evolution
- Submitted: 24.09.2025
- Accepted: 19.11.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/691222
- DOI: https://doi.org/10.17816/ecogen691222
- ID: 691222
Cite item
Full Text
Abstract
Tsarskoye Selo is a large population with a 30-year history, derived by crossbreeding Cornish, White Plymouth Rock, New Hampshire and Poltava Clay chicken breeds. Over the course of classical selection and the application of genetic methods, homozygous regions - Islands of runs of homozygosity (ROH islands) have formed in the genome of this population as a result of artificial selection. Through ROH analysis we can assess the inbreeding intensity within the population and to identify genes associated with traits that have been under sustained selective pressure for several decades. The current investigation provides one of the molecular genetic bases supporting the recognition of the Tsarskoye Selo as a distinct autosexing dual-purpose (meat and egg) breed. Previously, authors performed a genome wide association analysis, then assessed genotype-based divergence, and conducted an extensive evaluation of the exterior and interior profiles of Tsarskoye Selo chickens. However, homozygous regions have not been searched in this population. This study aims to search for traces of selection and to establish the role of genes in the ROHs islands we found on productive, adaptive and aspects related to quality characteristics. We searched for homozygous regions using the detectRUNS R dataset of previously sequenced samples on the NovaSeq 6000 Illumina instrument and found two short homozygous regions indicative of traces of selection. Analysis of detected ROH showed a gene pool related to chicken productivity, whereas other ROH included genes responsible for adaptive traits. The formation history and the search of selection traces are demonstrate an influence of artificial selection and subsequent changes in genome of Tsarskoye Selo population, which is an example of selection achievement in the present day, and actually has evolved into an individual breed.
Full Text
About the authors
Yuri Sergeevich Shcherbakov
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Email: yura.10.08.94.94@mail.ru
ORCID iD: 0000-0001-6434-6287
SPIN-code: 3547-1009
Scopus Author ID: 57221619264
ResearcherId: AAR-5595-2020
PhD in Biology
Researcher
Laboratory of molecular genetics
Russian Federation, 196601, St. Petersburg, Pushkin, Moskovskoe shosse, 55aOlga Anatolevna Nikolaeva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Author for correspondence.
Email: helgaa.nikolaeva@gmail.com
ORCID iD: 0000-0003-3828-1111
SPIN-code: 7193-6004
Scopus Author ID: 57941963300
ResearcherId: GPK-6027-2022
Junior Researcher
Laboratory of molecular genetics
Russian Federation, 196601, St. Petersburg, Pushkin, Moskovskoe shosse, 55aAnatoly Borisovich Vakhrameev
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Email: ab_poultry@mail.ru
ORCID iD: 0000-0001-5166-979X
SPIN-code: 6810-7339
Scopus Author ID: 56862214400
ResearcherId: AAD-1068-2022
Senior Researcher
laboratory for scientific support of the conservation of poultry genetic resources
Russian Federation, 196601, St. Petersburg, Pushkin, Moskovskoe shosse, 55
Anastasia Ivanovna Azovtseva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Email: ase4ica15@mail.ru
ORCID iD: 0000-0002-2963-378X
SPIN-code: 5784-2786
Scopus Author ID: 57942391700
ResearcherId: MSZ-1418-2025
Junior Researcher
Laboratory of molecular genetics
Russian Federation, 196601, St. Petersburg, Pushkin, Moskovskoe shosse, 55aNatalia Victorovna Dementieva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Email: dementevan@mail.ru
ORCID iD: 0000-0003-0210-9344
SPIN-code: 8768-8906
Scopus Author ID: 57189759592
ResearcherId: T-4551-2018
PhD in Biology
Chief Researcher
Laboratory of Molecular Genetics
196601, St. Petersburg, Pushkin, Moskovskoe shosse, 55aReferences
- Rostamzadeh ME, Esmailizadeh A, Han J, Wang MS. Comparative Analysis of Runs of Homozygosity Islands in Indigenous and Commercial Chickens Revealed Candidate Loci for Disease Resistance and Production Traits. Veterinary Medicine and Science. 2025;11(1):e70074. doi: 10.1002/vms3.70074
- Paronyan IA, Yurchenko OP, Vakhrameev AB, Karpukhina IV Using gene pool of indigenous and local breeds for creation of new chicken populations. Ptitsevodstvo. 2015;1(12):11-18. (In Russ.) EDN: VFXLFJ
- Roberts V. British poultry standards. Roberts V., editor. John Wiley & Sons press, 2009.
- Ekarius C. Storey's illustrated guide to poultry breeds: chickens, ducks, geese, turkeys, emus, guinea fowl, ostriches, partridges, peafowl, pheasants, quails, swans. Guare S. Burns D., editors, Storey publishing, 2007.
- Moiseyeva IG, Romanov MN, Kovalenko AT, et al. The Poltava chicken breed of Ukraine: its history, characterization and conservation. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales. 2007;(40):71-78. doi: 10.1017/S1014233900002212
- Horecka B, Wojciechowski W, Drabik K, et al. Characterization of the Coding Sequence of the MC1R (Melanocortin 1 Receptor) Gene of Ayam Cemani Black Chickens. Animals. 2024;14(17):2507-2515. doi: 10.3390/ani14172507
- Schwochow D, Bornelöv S, Jiang T, et al. The feather pattern autosomal barring in chicken is strongly associated with segregation at the MC1R locus. Pigment cell & melanoma research. 2021;34(6):1015–1028. doi: 10.1111/pcmr.12975
- Schwochow Thalmann D, Ring H, Sundström E, et al. The evolution of Sex-linked barring alleles in chickens involves both regulatory and coding changes in CDKN2A. PLoS genetics. 2017;13(4):e1006665. doi: 10.1371/journal.pgen.1006665
- Jurchenko OP, Vakhrameev AB, Makarova AV, The genetic potential of productivity and breeding value of animals. Genetics and breeding of animals. 2015;(4):41-45. (In Russ.) EDN: VOXXKX
- Gunnarsson, U, Hellström, AR, Tixier-Boichard M, et. al. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics, 2007;175(2):867-877. doi.org/10.1534/genetics.106.063107
- Makarova AV, Mitrofanova OV, Vakhrameev AB, Dementeva NV. Molecular-genetic bases of plumage coloring in chicken. Vavilov Journal of Genetics and Breeding. 2009;23(3):343-354. doi: 10.18699/VJ19.499
- Makarova AV, Vakhrameev AB Use of autosexable chicken systems in the breeding of gene pools and populations. Genetics and breeding of animals. 2017;(3):28-33. (In Russ.) EDN: YMYKTI
- Makarova AV, Jurchenko OP, Vakhrameev AB. Productivity and quality of eggs of bilinear hybrids obtained on the basis of gene pool rocks and populations. Genetics and breeding of animals. 2018;(3):39-44. (In Russ.) EDN: YQORPV doi: 10.31043/2410-2733-2018-3-39-44
- Makarova AV, Vakhrameev AB, Dementieva NV, Fedorova ZL. Creation of autosex chicken breeds for organic poultry farming, Proceedings of the National Academy of Sciences of Belarus, agrarian Series, 2021;59(4):477–487. (In Russ.) EDN: JYVMCZ. doi: 10.29235/1817-7204-2021-59-4-477-487
- Larkina TA, Vakhrameev AB, Stanishevskaya OI, et. al. Comparison of the exterior profile of the Russian White and Tsarskoye Selo chicken breeds. Agrarian science. 2024;(12):77-83. (In Russ.) EDN: BNYXFR doi: 10.32634/0869-8155-2024-389-12-77-83
- Vakhrameev AB, Dementieva NV, Fedorova ZL, Pozovnikova MV. Evaluation of the productivity in the dual-purpose chicken breed Tsarskoselskaya. Ptitsevodstvo. 2024;73(1):5-11. (In Russ.) EDN: WAHDEJ doi: 10.33845/0033-3239-2024-73-1-5-11
- Azovtseva АI, Shcherbakov YS, Vakhrameev AB, et al. Analysis of selection progress in populations of the Tsarskoye Selo breed of chickens based on exterior data. Achievements of Science and Technology in Agribusiness. 2024;1(5):21-28. (In Russ.) EDN: HHGRRD doi: 10.53859/02352451_2024_38_5_21
- Vakhrameev AB, Narushin VG, Larkina TA, et al. Disentangling clustering configuration intricacies for divergently selected chicken breeds. Scientific reports. 2023;13(1):3319-3332. EDN: PESPKM doi: 10.1038/s41598-023-28651-8
- Basheer A, Haley CS, Law A, et al. Genetic loci inherited from hens lacking maternal behaviour both inhibit and paradoxically promote this behaviour. Genetics Selection Evolution. 2015;(47):1-10. doi: 10.1186/s12711-015-0180-y
- Darras VM. The role of maternal thyroid hormones in avian embryonic development. Frontiers in Endocrinology. 2019;10:66. doi: 10.3389/fendo.2019.00066
- Lebedeva IY, Mityashova OS, Leynikova OV, Montvila EK. The levels of pituitary-thyroid axis hormones and their relationship with ovarial hormones during the ovulatory cycle of young laying hens (Gallus domesticus L.) Agricultural biology. 2024;59(6):1169-1178. EDN: MYCDRI doi: 10.15389/agrobiology.2024.6.1169reng
- Gorelik LS, Gorelik OV, Kharlap SY. The state of the pituitary-thyroidal system of chickens during laying period. Animal Husbandry and Fodder Production. 2018;101(2), 104-111. (In Russ.) EDN: XZCKPR
- McNabb AFM, Darras VM. Thyroids. Sturkie's avian physiology. 2015;6:535-547. doi: 10.1016/B978-0-12-407160-5.00024-5
- Tixier-Boichard M, Bed’Hom B, Rognon X. Chicken domestication: from archeology to genomics. Comptes Rendus. Biologies. 2011;334(3):197-204. doi: 10.1016/j.crvi.2010.12.012
- Rubin CJ, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;(464):587–591. doi: 10.1038/nature08832
- Grommen SVH, Taniuchi S, Janssen T, et al. Molecular cloning, tissue distribution and ontogenic thyroidal expression of the chicken thyrotropin receptor. Endocrinology. 2006;(147): 3943–3951. doi: 10.1210/en.2005-1223
- Grommen SV, Taniuchi S, Darras VM, et al. Identification of unique thyrotropin receptor (TSHR) splice variants in the chicken: The chicken TSHR gene revisited. General and comparative endocrinology. 2008;156(3):460-463. doi: 10.1016/j.ygcen.2008.03.003
- Qanbari S, Rubin CJ, Maqbool K, et al. Genetics of adaptation in modern chicken. PLoS Genetics. 2019;15(4):e1007989. doi: 10.1371/journal.pgen.1007989
- Wang MS, Zhang JJ, Guo X, et al. Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biology. 2021;(19):1-16. doi: 10.1186/s12915-021-01052-x
- Abdelmanova AS, Dotsev AV, Romanov MN, et al. Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian White and meat-type White Cornish chickens. Biology. 2021;10(9):876-907. EDN: ZSOVBQ doi: 10.3390/biology10090876
- Karlsson AC, Fallahshahroudi A, Johnsen H, et al. A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens. General and Comparative Endocrinology. 2016;(228):69-78. doi: 10.1016/j.ygcen.2016.02.010
- Darras VM, Van Herck SL, Geysens S, Reyns GE. Involvement of thyroid hormones in chicken embryonic brain development. General and comparative endocrinology. 2009;163(1-2), 58-62. doi: 10.1016/j.ygcen.2008.11.014
- Deng Y, Hu S, Luo C, et al. Integrative analysis of histomorphology, transcriptome and whole genome resequencing identified DIO2 gene as a crucial gene for the protuberant knob located on forehead in geese. BMC Genomics. 2021;22(1):487-503. doi: 10.1186/s12864-021-07822-9
- Zhang Y, Xu X, Ji W, et al. Morphological, anatomical and histological studies on knob and beak characters of six goose breeds from China. Frontiers in Physiology. 2023;(14):1241216. doi: 10.3389/fphys.2023.1241216
- Kumar A, Rajendran V, Sethumadhavan R, Purohit R. CEP proteins: the knights of centrosome dynasty. Protoplasma. 2013;250(5):965–983. doi: 10.1007/s00709-013-0488-9
- Wang B, Jia X, Yao Q, et al. CEP128 is a crucial risk locus for autoimmune thyroid diseases. Molecular and Cellular Endocrinology. 2019;(480):97-106. doi: 10.1016/j.mce.2018.10.017
- Huang M, Wang H, Li J, Zhou Z, et al. Involvement of ALF in human spermatogenesis and male infertility. International journal of molecular medicine. 2006;17(4):599-604. doi: 10.3892/ijmm.17.4.599
- Zhang Y, He XJ, Song B, et al. Association of single nucleotide polymorphisms in the USF1, GTF2A1L and OR2W3 genes with non-obstructive azoospermia in the Chinese population. Journal of assisted reproduction and genetics. 2015;(32):95-101. doi: 10.1007/s10815-014-0369-y
- Yuan J, Sun C, Dou T, et al. Identification of promising mutants associated with egg production traits revealed by genome-wide association study. PLoS One. 2015;10(10):e0140615. doi: 10.1371/journal.pone.0140615
- Sun C, Lu J, Yi G, et al. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. PloS One. 2015;10(9):e0137145. doi: 10.1371/journal.pone.0137145
- Sun Y, Wu Q, Lin R, et al. Genome-wide association study for the primary feather color trait in a native Chinese duck. Frontiers in Genetics. 2023;(14):1065033. doi: 10.3389/fgene.2023.1065033
- Opazo JC, Vandewege MW, Gutierrez J, et al. Independent duplications of the Golgi phosphoprotein 3 oncogene in birds. Scientific Reports. 2021;11(1):12483. doi: 10.1038/s41598-021-91909-6
- Santra MK, Wajapeyee N, Green MR. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 2009;459(7247):722-725. doi: 10.1038/nature08011
- Pilcher C, Buco PAV, Truong JQ, et al. Characteristics of the Kelch domain containing (KLHDC) subfamily and relationships with diseases. FEBS letters. 2025;599(8):1094-1112. doi: 10.1002/1873-3468.15108
- Pontén F, Gry M, Fagerberg L, et al. A global view of protein expression in human cells, tissues, and organs. Molecular systems biology. 2009;5(1):337-346 doi: 10.1038/msb.2009.93
- Ding Y, Zhao J, Xu X, et al. Inhibition of autophagy maintains ESC pluripotency and inhibits primordial germ cell formation in chickens. Stem Cells International. 2023;(1):4956871. doi: 10.1155/2023/4956871
- Maier HJ, Cottam EM, Stevenson-Leggett P, et al. Visualizing the autophagy pathway in avian cells and its application to studying infectious bronchitis virus. Autophagy. 2013;9(4):496-509. doi: 10.4161/auto.23465
- Zhang R, Sun J, Wang Y, et al. Ameliorative effect of phenolic compound-pterostilbene on corticosterone-induced hepatic lipid metabolic disorder in broilers. The Journal of Nutritional Biochemistry. 2025;(137):109822. doi: 10.1016/j.jnutbio.2024.109822
- Carlson RJ, Leiken MD, Guna A, et al. A genome-wide optical pooled screen reveals regulators of cellular antiviral responses. Proceedings of the National Academy of Sciences. 2023;120(16):e2210623120. doi: 10.1073/pnas.221062312
- Matía A, McCarthy F, Woosley H, et al. Spatio-temporal analysis of Vaccinia virus infection and host response dynamics using single-cell transcriptomics and proteomics. bioRxiv. 2024:1-30. doi: 10.1101/2024.01.13.575413
- Hall DD, Takeshima H, Song LS. Structure, function, and regulation of the junctophilin family. Annual review of physiology. 2024;86(1):123-147. doi: 10.1146/annurev-physiol-042022-014926
- Hediger MA, Clémençon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Molecular aspects of medicine. 2013;34(2-3):95-107. doi: 10.1016/j.mam.2012.12.009
- Sun LL, He HY, Li W, et al. The solute carrier transporters (SLCs) family in nutrient metabolism and ferroptosis. Biomarker research. 2024;12(1):94-114. doi: 10.1186/s40364-024-00645-2
- Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends in biochemical sciences. 2018;43(10):752-789. doi: 10.1016/j.tibs.2018.05.003
- Khwatenge CN, Kimathi BM, Nahashon SN. Transcriptome analysis and expression of selected cationic amino acid transporters in the liver of broiler chicken fed diets with varying concentrations of lysine. International journal of molecular sciences. 2020;21(16):5594-5612. doi: 10.3390/ijms21165594
Supplementary files


