АНАЛИЗ ЭВОЛЮЦИОННОЙ НОВИЗНЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ, ЭКСПРЕССИРУЮЩИХСЯ В ОПУХОЛЯХ



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В предыдущих работах мы определили новый класс последовательностей человека, экспрессирующихся преимущественно в опухолях. Здесь мы представляем результаты сравнительно-геномного анализа и анализа консервативности для девяти ранее описанных опухолеспецифических последовательностей. Tри последовательности специфичны для приматов. Для трех последовательностей, имеющих ортологи в геномах млекопитающих, анализ частот нуклеотидных замен и поиск консервативных элементов показал, что они эволюционируют нейтрально. Oставшиеся три последовательности являются консервативными. Эти результаты подтверждают ранее сформулированную нами гипотезу о том, что в опухолях экспрессируются эволюционно новые последовательности.

Об авторах

Николай Анатольевич Самусик

Биомедицинский центр, Санкт-Петербург, РФ

Email: veraptor@yandex.ru

Юрий Павлович Галачьянц

Лимнологический институт СО РАН, Иркутск, Иркутская Область, РФ

Email: yuragal@gmail.com

Андрей Петрович Козлов

Биомедицинский центр, Санкт-Петербург, РФ

Email: contact@biomed.spb.ru

Список литературы

  1. Eвтушенко В. И., Хансон К. П., Барабицкая О. В. и др., 1989. Определение верхнего предела величины экспрессии генома крысы//Молекулярная биология. Т. 23, № 3. С. 663-675.
  2. Козлов А. П., 1976. Регуляторные механизмы как выражение и результат эволюции конкурентных отношений между генами//Соленостные адаптации водных организмов. Ленинград: Изд-во АН СССР, стр. 237.
  3. Козлов А. П., 1983. Принципы многоуровневого развития организмов//Проблемы анализа биологических систем/Ред. Максимов В. Н. Москва, изд-во Московского университета, стр. 48-62.
  4. Козлов А. П., 1987. Генная конкуренция и возможная эволюционная роль опухолей и клеточных онкогенов//Теоретические и математические аспекты морфогенеза/Ред. Преснов Е. В., Маресин Е. В., Зотин А. И. Москва, изд-во «Наука», стр. 136-140.
  5. Козлов А. П., 1988. Принципы сохранения в системе молекулярно-биологических законов. Теоретическая биология: структурно-функциональный подход. Л.: Изд-во ЛГУ. С. 4-21.
  6. Козлов А. П., 2008. Опухоли и эволюция//Вопросы онкологии. Vol. 54. N 6. P. 695-705.
  7. Banyani L., Varadi A., Patthy L., 1983. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator//FEBS Lett. Vol. 163. p. 37.
  8. Baranova A. V., Lobashev A. V. et al., 2001. In silico screening for tumour-specific expressed sequences in human genome//FEBS Lett. Vol. 508. P. 143-148.
  9. Begun D. J., Lindfors H. A., Thompson M. E., Holloway A. K., 2006. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags//Genetics. Vol. 172. N 3. P. 1675-1681.
  10. Begun D. J., Lindfors H. A., Kern A. D., Jones C. D., 2007. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade//Genetics. Vol. 176. N 2. P. 1131-1137.
  11. Blaise S., de Parseval N., Bйnit L., Heidmann T., 2003. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution//Proc. Natl. Acad. Sci. Vol. 1000. N 22. P. 13013-13018.
  12. Comeron J. M., 1995. A method for estimating the numbers of synonymous and nonsynonymous substitutions per site//J. Mol. Evol. Vol. 41, N 6. P. 1152-1159.
  13. Comeron J. M., 1999. K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals//Bioinformatics. Vol. 9. P 763-764.
  14. Doolittle R. F., 1985. The genealogy of some recently evolved vertebrate proteins//Trends Biochem Sci. Vol. 10. P. 233.
  15. Evtushenko V. I., Khanson K. P., Barabitskaia O. V. et al., 1989. Determination of the upper limit of the value for rat genome expression//Mol. Biol. (Mosk). Vol. 23. N 3. P. 663-675.
  16. Gokhale P. J., Giesberts A. M., Andrews P. W., 2000. Brachyury is expressed by human teratocarcinoma cells in the absence of mesodermal differentiation//Cell Growth. Differ. Vol. 11. N 3. P. 157-162.
  17. Guan Y., Kuo W. L., Stilwell J. L. et al., 2007. Amplification of PVT1 Contributes to the Pathophysiol-ogy of Ovarian and Breast Cancer//Clin. Cancer Res. Vol. 13. N 19. P. 5745-5755.
  18. Hardison R. C., Roskin K. M., Yang S. et al., 2003. Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution//Genome Res. Vol. 13, N 1. P. 13-26.
  19. Haldane J. B. S., 1932. The Causes of Evolution. Longmans & Green, London.
  20. Jungert K., Buck A., Buchholz M. et al. 2006. Smad-Sp1 complexes mediate TGFbeta-induced early transcription of oncogenic Smad7 in pancreatic cancer cells//Carcinogenesis. Vol. 27. N 12. P. 2392-2401.
  21. Kanai M., Wei D., Li Q. et al. 2006. Loss of Kruppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression//Clin. Cancer Res. Vol. 12. N. 21. P. 6395-6402.
  22. Kapranov P., Cheng J., Dike S. et al., 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription//Science. Vol. 316 (5830). P. 1484-1488.
  23. Kimura M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences//J. Mol. Evol. Vol. 16, N 2. P. 111-120.
  24. Kowalski P. E., Freeman J. D., Nelson D. T., Mager D. L., 1997. Genomic structure and evolution of a novel gene (PLA2L) with duplicated phospholipase A2-like domains//Genomics. Vol. 39, N 1. P. 38-46.
  25. Kozlov A. P., 1992. The maximal expression of mammalian genome, the complexity of tumor-specific transcripts and the cloning of tumor-specific cDNAs//Abstracts of Annual Meeting Sponsored by Laboratory of Tumor Cell Biology. Bethesda, MD, USA.
  26. Kozlov A. P., Galachyants Y. P., Dukhovlinov I. V. et al., 2006. Evolutionarily new sequences expressed in tumors//Infect Agent Cancer. Vol. 1. P. 8.
  27. Krukovskaja L. L., Baranova A. V., Tyezelova T. et al., 2005. Experimental study of human expressed sequences newly identified in silico as tumour specific//Tumour Biol. Vol. 26, P. 17-24.
  28. Kozlov A. P., 1979. Evolution of Living Organisms as a Multilevel Process//J Theor Biol. Vol. 81. P. 1-17.
  29. Kozlov A. P., 1996. Gene Competition and the Possible Evolutionary Role of Tumours//Medical Hypotheses. Vol. 46, P. 81-84.
  30. Muller H. J., 1935. The origin of chromatin deficiencies as minute deletions subject to insertion elsewhere//Genetics. Vol. 17. P. 237-252.
  31. Ohno S., 1970. Evolution by gene duplication. Springer, Berlin.
  32. Okahara G., Matsubara S., Oda T. et al., 2004. Expression analyses of human endogenous retroviruses (HERVs): tissue-specific and developmental stage-dependent expression of HERVs//Genomics. Vol. 84. N 6. P. 982-990.
  33. Palena C., Polev D. E., Tsang K. Y. et al., 2007. The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy//Clin Cancer Res. Vol. 13, N 8. P. 2471-2478.
  34. Patthy L., 1985. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules//Cell. Vol. 41. P. 657.
  35. Pedersen J. S., Bejerano G., Siepel A. et al., 2006. Identification and classification of conserved RNA secondary structures in the human genome//PLoS Comput Biol. Vol. 2. N 4. P. 33-38.
  36. Pennisi E., 2007. Genomics DNA study forces rethink of what it means to be a gene//Science. Vol. 316 (5831). P. 1556-1557.
  37. Sark M. W., Fischer D. F., de Meijer E. et al., 1998. AP-1 and ets transcription factors regulate the expression of the human SPRR1A keratinocyte terminal differentiation marker//J. Biol. Chem. Vol. 273. N 8. P. 24683-24692.
  38. Schiavetti F., Thonnard J., Colau D. et al., 2002. A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes//Cancer Res. Vol. 62. N 19. P. 5510-5516.
  39. Schwartz S., Kent W. J., Smit A. et al., 2003. Human-Mouse Alignments with BLASTZ//Genome Res. Vol. 13. N 1. P. 103-107.
  40. Sjottem E., Anderssen S., Johansen T., 1996. The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3' to the TATA box//J. Virol. Vol. 70. N 1. P. 188-198.
  41. Stauffer Y., Theiler G., Sperisen P. et al., 2004. Digital expression profiles of human endogenous retroviral families in normal and cancerous tissues//Cancer Immun. Vol. 4. P. 2.
  42. Tong Y., Tan Y., Zhou C., Melmed S., 2007. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition//Oncogene. Vol. 26. N 38. P. 5596-5605.
  43. Wilkinson D. A., Freeman J. D., Goodchild N. L. et al., 1990. Autonomous expression of HERV-H endogenous retroviruslike elements in human cells//J. Virol. Vol. 64. P. 2157-2167. 29.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самусик Н.А., Галачьянц Ю.П., Козлов А.П., 2009

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах