Modern technologies for the production of vaccines against avian infectious diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Vaccination is one of the most effective and versatile ways to prevent infectious diseases. The development of modern technologies makes it possible to obtain vaccines with desired properties. The review presents data on different types of vaccines used for the prevention of infectious diseases of birds. The advantages and disadvantages of traditional attenuated and inactivated vaccines, as well as recombinant vaccines – vector, subunit, based on virus-like particles and DNA vaccines – are considered. Possibilities of bacterial, yeast, baculovirus and plant systems for the expression of heterologous genes for the production of recombinant vaccines are discussed.

Full Text

Restricted Access

About the authors

Andrei M. Rumyantsev

Saint Petersburg State University

Email: rumyantsev-am@mail.ru
ORCID iD: 0000-0002-1744-3890
SPIN-code: 9335-1184
Scopus Author ID: 55370658800

PhD, Cand. Sci. (Med.)

Russian Federation, 7/9, Universitetskaya embankment, Saint Petersburg, 199034

Anton V. Sidorin

Saint Petersburg State University

Email: spacerocketpilot@gmail.com

Bachelor of Science

Russian Federation, 7/9, Universitetskaya embankment, Saint Petersburg, 199034

Elena V. Sambuk

Saint Petersburg State University

Email: esambuk@mail.ru
ORCID iD: 0000-0003-0837-0498
SPIN-code: 8281-8020
Scopus Author ID: 6603061322
ResearcherId: H-6895-2013

Dr. Sci. (Biol.)

Russian Federation, 7/9, Universitetskaya embankment, Saint Petersburg, 199034

Marina V. Padkina

Saint Petersburg State University

Author for correspondence.
Email: mpadkina@mail.ru
ORCID iD: 0000-0002-4051-4837
SPIN-code: 7709-0449
Scopus Author ID: 6602596755

Dr. Sci. (Biol.)

Russian Federation, 7/9, Universitetskaya embankment, Saint Petersburg, 199034

References

  1. Marangon S, Busani L. The use of vaccination in poultry production. Rev Sci Tech. 2007;26(1):265–274. doi: 10.20506/rst.26.1.1742
  2. Hon CC, Lam TT, Yip CW, et al. Phylogenetic evidence for homologous recombination within the family Birnaviridae. J Gen Virol. 2008;89(12):3156–3164. doi: 10.1099/vir.0.2008/004101-0
  3. Berg TP. Acute infectious bursal disease in poultry: a review. Avian Pathol. 2000;29(3):175–194. doi: 10.1080/03079450050045431
  4. Muller H, Mundt E, Eterradossi N, et al. Current status of vaccines against infectious bursal disease. Avian Pathol. 2012;41(2):133–139. doi: 10.1080/03079457.2012.661403
  5. Miller PJ, Koch G. Newcastle disease. 13th ed. Swayne DE, Glisson JR, McDougald LR, et al editors. Diseases of Poultry, Hoboken (NJ), USA: Wiley-Blackwell, 2013. 89–138 p.
  6. Alexander DJ, Aldous EW, Fuller C.M. The long view: a selective review of 40 years of Newcastle disease research. Avian Pathol. 2012;41(4):329–335. doi: 10.1080/03079457.2012.697991
  7. Bello MB, Yusoff K, Ideris A, et al. Exploring the prospects of engineered Newcastle Disease Virus in modern vaccinology. Viruses. 2020;12(4):451. doi: 10.3390/v12040451
  8. Rosario K, Breitbart M, Harrach B, et al. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol. 2017;162(5):1447–1463. doi: 10.1007/s00705-017-3247-y
  9. Fatoba AJ, Adeleke MA. Chicken anemia virus: A deadly pathogen of poultry. Acta Virol. 2019;63(1):19–25. doi: 10.4149/av_2019_110
  10. Zelník V. Marek’s disease and new approaches to its control. Acta Virol. 1995;39(1):53–63.
  11. Venugopal K. Marek’s disease: an update on oncogenic mechanisms and control. Res Vet Sci. 2000;69(1):17–23. doi: 10.1053/rvsc.2000.0396
  12. Witter RL, Calnek BW, Buscaglia C, et al. Classification of Marek’s disease viruses according to pathotype: philosophy and methodology. Avian Pathol. 2005;34(2):75–90. doi: 10.1080/03079450500059255
  13. Nair V. Spotlight on avian pathology: Marek’s disease. Avian Pathol. 2018;47(5):440–442. doi: 10.1080/03079457.2018.1484073
  14. Biggs PM, Nair V. The long view: 40 years of Marek’s disease research and avian pathology. Avian Pathol. 2012;41(1):3–9. doi: 10.1080/03079457.2011.646238
  15. McGeoch DJ, Dolan A, Ralph AC. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol. 2000;74(22):10401–10406. doi: 10.1128/jvi.74.22.10401-10406.2000
  16. Bagust TJ, Jones RC, Guy JS. Avian infectious laryngotracheitis. Rev Sci Tech. 2000;19(2):483–492. doi: 10.20506/rst.19.2.1229
  17. Ou SC, Giambrone JJ. Infectious laryngotracheitis virus in chickens. World J Virol. 2012;1(5):142–149. doi: 10.5501/wjv.v1.i5.142
  18. Sharma JM. Hemorrhagic enteritis of turkeys. Vet Immunol Immunopathol. 1991;30(1):67–71. doi: 10.1016/0165-2427(91)90009-2
  19. Rautenschlein S, Sharma JM. Immunopathogenesis of haemorrhagic enteritis virus (HEV) in turkeys. Dev Comp Immunol. 2000;24(2–3):237–246. doi: 10.1016/s0145-305x(99)00075-0
  20. Suttie A, Deng YM, Greenhill AR, et al. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes. 2019;55(6):739–768. doi: 10.1007/s11262-019-01700-z
  21. Rautenschlein S, Kraemer Ch, Vanmarcke J, et al. Protective efficacy of intermediate and intermediate plus infectious bursal disease virus (IBDV) vaccines against very virulent IBDV in commercial broilers. Avian Dis. 2005;49(2):231–237. doi: 10.1637/7310-112204R
  22. Dey S, Pathak DC, Ramamurthy N, et al. Infectious bursal disease virus in chickens: prevalence, impact, and management strategies. Vet Med (Auckl). 2019;10:85–97. doi: 10.2147/VMRR.S185159.
  23. Ike AC, Ononugbo CM, Obi OJ, et al. Towards improved use of vaccination in the control of infectious bronchitis and Newcastle disease in poultry: understanding the immunological mechanisms. Vaccines (Basel). 2021;9(1):20. doi: 10.3390/vaccines9010020
  24. Kapczynski DR, Afonso CL, Miller PJ. Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol. 2013;41(3):447–453. doi: 10.1016/j.dci.2013.04.012
  25. Dimitrov KM, Afonso CL, Yu Q, et al. Newcastle disease vaccines-A solved problem or a continuous challenge? Vet Microbiol. 2017;206:126–136. doi: 10.1016/j.vetmic.2016.12.019
  26. Todd D, Creelan JL, Connor TJ, et al. Investigation of the unstable attenuation exhibited by a chicken anaemia virus isolate. Avian Pathol. 2003;32(4):375–382. doi: 10.1080/037945031000121121
  27. Biggs PM. Marek’s disease – the disease and its prevention by vaccination. Br J Cancer Suppl. 1975;2:152–155.
  28. Thilakarathne DS, Coppo MJC, Hartley CA, et al. Attenuated infectious laryngotracheitis virus vaccines differ in their capacity to establish latency in the trigeminal ganglia of specific pathogen free chickens following eye drop inoculation. PLoS One. 2019;14(3): e0213866. doi: 10.1371/journal.pone.0213866
  29. Sharma JM. Response of specific-pathogen-free turkeys to vaccines derived from marble spleen disease virus and hemorrhagic enteritis virus. Avian Dis. 1994;38(3):523–530.
  30. Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007;25(30):5637–5644. doi: 10.1016/j.vaccine.2006.10.051
  31. Kostina LV, Zaberezhnyy AD, Grebennikova TV, et al. Vaccines against avian influenza in poultry. Problems of Virology. 2017;62(2): 53–60. (In Russ.) doi: 10.18821/0507-4088-2017-62-2-53-60
  32. Ellis TM, Leung CY, Chow MK, et al. Vaccination of chickens against H5N1 avian influenza in the face of an outbreak interrupts virus transmission. Avian Pathol. 2004;33(4):405–412. doi: 10.1080/03079450410001724012
  33. Gogoladze DT, Dzhavadov EhD, Serova NYu. Importozameshchenie veterinarnykh vaktsin i test-sistem v sovremennom promyshlennom ptitsevodstve Rossii. Ptitsa i ptitseprodukty. 2016;(3):41–43. (In Russ.)
  34. Ellis RW. Development of combination vaccines. Vaccine. 1999;17(13–14):1635–1642. doi: 10.1016/s0264-410x(98)00424-1
  35. Uzzau S, Marogna G, Leori GS, et al. Virulence attenuation and live vaccine potential of aroA, crp cdt cya, and plasmid-cured mutants of Salmonella enterica serovar Abortusovis in mice and sheep. Infect Immun. 2005;73(7):4302–4308. doi: 10.1128/IAI.73.7.4302-4308.2005
  36. Fuchs W, Veits J, Helferich D, et al. Molecular biology of avian infectious laryngotracheitis virus. Vet Res. 2007;38(2):261–279. doi: 10.1051/vetres:200657
  37. Nogales A, Martínez-Sobrido L. Reverse genetics approaches for the development of influenza vaccines. Int J Mol Sci. 2016;18(1):20. doi: 10.3390/ijms18010020
  38. Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine. 2020;38(45):6990–7001. doi: 10.1016/j.vaccine.2020.09.013
  39. Lin IY, Van TT, Smooker PM. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines (Basel). 2015;3(4):940–872. doi: 10.3390/vaccines3040940
  40. Jackwood MW. Current and future recombinant viral vaccines for poultry. Adv Vet Med. 1999;41:517–522. doi: 10.1016/s0065-3519(99)80038-x
  41. Afonso CL, Tulman ER, Lu Z, et al. The genome of fowlpox virus. J Virol. 2000;74(8):3815–3831. doi: 10.1128/jvi.74.8.3815-3831.2000
  42. Butter C, Sturman TD, Baaten BJ, et al. Protection from infectious bursal disease virus (IBDV)-induced immunosuppression by immunization with a fowlpox recombinant containing IBDV-VP2. Avian Pathol. 2003;32(6):597–604. doi: 10.1080/03079450310001610686
  43. Yanagida N, Ogawa R, Li Y, et al. Recombinant fowlpox viruses expressing the glycoprotein B homolog and the pp38 gene of Marek’s disease virus. J Virol. 1992;66(3):1402–1408. doi: 10.1128/JVI.66.3.1402-1408.1992
  44. Jackwood M, Hickle L, Kapil S, et al. Vaccine development using recombinant DNA technology. CAST (Council agricult sci technol). 2008;38:12.
  45. Qiao CL, Yu KZ, Jiang YP, et al. Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. Avian Pathol. 2003;32(1):25–32. doi: 10.1080/0307945021000070688.
  46. Cardona CJ, Reed WM, Witter RL, et al. Protection of turkeys from hemorrhagic enteritis with a recombinant fowl poxvirus expressing the native hexon of hemorrhagic enteritis virus. Avian Dis. 1999;43(2):234–244. doi: 10.2307/1592613
  47. Cardona CJ, Nazerian K, Reed WM, et al. Characterization of a recombinant fowlpox virus expressing the native hexon of hemorrhagic enteritis virus. Virus Genes. 2001;22(3):353–361. doi: 10.1023/a:1011134811271
  48. Bublot M, Pritchard N, Le Gros FX, et al. Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody. J Comp Pathol. 2007;137(1): S81–84. doi: 10.1016/j.jcpa.2007.04.017
  49. Li K, Liu Y, Zhang Y, et al. Protective efficacy of a novel recombinant Marek’s disease virus vector vaccine against infectious bursal disease in chickens with or without maternal antibodies. Vet Immunol Immunopathol. 2017;186:55–59. doi: 10.1016/j.vetimm.2017.02.003
  50. García M. Current and future vaccines and vaccination strategies against infectious laryngotracheitis (ILT) respiratory disease of poultry. Vet Microbiol. 2017;206:157–162. doi: 10.1016/j.vetmic.2016.12.023
  51. Palya V, Kiss I, Tatar-Kis T, et al. Advancement in vaccination against Newcastle disease: recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian Dis. 2012;56(2):282–287. doi: 10.1637/9935-091511-Reg.1
  52. Huang Z, Elankumaran S, Panda A, et al. Recombinant Newcastle disease virus as a vaccine vector. Poult Sci. 2003;82(6):899–906. doi: 10.1093/ps/82.6.899
  53. Dhama K, Gowthaman V, Karthik K, et al. Haemorrhagic enteritis of turkeys – current knowledge. Vet Q. 2017;37(1):31–42. doi: 10.1080/01652176.2016.1277281
  54. Gupta RK. Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev. 1998;32(3):155–172. doi: 10.1016/s0169-409x(98)00008-8
  55. Spickler AR, Roth JA. Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med. 2003;17(3):273–281. doi: 10.1111/j.1939-1676.2003.tb02448.x
  56. Asif M, Jenkins KA, Hilton LS, et al. Cytokines as adjuvants for avian vaccines. Immunol Cell Biol. 2004;82(6):638–643. doi: 10.1111/j.1440-1711.2004.01295.x
  57. Wang BZ, Quan FS, Kang SM, et al. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J Virol. 2008;82(23):11813–11823. doi: 10.1128/JVI.01076-08
  58. Gupta SK, Bajwa P, Deb R, et al. Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines. Clin Vaccine Immunol. 2014;21(3):261–270. doi: 10.1128/CVI.00669-13
  59. Dalloul RA, Lillehoj HS, Okamura M, et al. In vivo effects of CpG oligodeoxynucleotide on Eimeria infection in chickens. Avian Dis. 2004;48(4):783–790. doi: 10.1637/7154-010704R
  60. Rong J, Jiang T, Cheng T, et al. Large-scale manufacture and use of recombinant VP2 vaccine against infectious bursal disease in chickens. Vaccine. 2007;25(46):7900–7908. doi: 10.1016/j.vaccine.2007.09.006
  61. Omar AR, Kim CL, Bejo MH, et al. Efficacy of VP2 protein expressed in E. coli for protection against highly virulent infectious bursal disease virus. J Vet Sci. 2006;7(3):241–247. doi: 10.4142/jvs.2006.7.3.241
  62. Pitcovski J, Fingerut E, Gallili G, et al. A subunit vaccine against hemorrhagic enteritis adenovirus. Vaccine. 2005;23(38):4697–4702. doi: 10.1016/j.vaccine.2005.03.049
  63. Sączynska V, Romanik-Chruscielewska A, Florys K, et al. Prime-boost vaccination with a novel hemagglutinin protein produced in bacteria induces neutralizing antibody responses against H5-subtype influenza viruses in commercial chickens. Front Immunol. 2019;10:2006. doi: 10.3389/fimmu.2019.02006
  64. Shen SY, Chang WC, Yi HH, et al. Development of a subunit vaccine containing recombinant chicken anemia virus VP1 and pigeon IFN-γ. Vet Immunol Immunopathol. 2015;167(3–4):200–204. doi: 10.1016/j.vetimm.2015.08.002
  65. Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72(2):211–222. doi: 10.1007/s00253-006-0465-8
  66. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 2009;27(3): 297–306. doi: 10.1016/j.biotechadv.2009.01.008
  67. Belzhelarskaya SN. Bakulovirusnye sistemy ehkspressii rekombinantnykh belkov v kletkakh nasekomykh i mlekopitayushchikh. Molecular Biology. 2011;45(1):142–159. (In Russ.)
  68. Vakharia VN, Snyder DB, He J, et al. Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens. J Gen Virol. 1993;74(6):1201–1206. doi: 10.1099/0022-1317-74-6-1201
  69. Liu Y, Wei Y, Wu X, et al. Preparation of ChIL-2 and IBDV VP2 fusion protein by baculovirus expression system. Cell Mol Immunol. 2005;2(3):231–235.
  70. Tseng T-Y, Liu Y-C, Hsu Y-C, et al. Preparation of chicken anemia virus (CAV) virus-like particles and chicken Interleukin-12 for vaccine development using a baculovirus expression system. Pathogens. 2019;8(4):262. doi: 10.3390/pathogens8040262
  71. Eckart MR, Bussineau CM. Quality and authenticity of heterologous proteins synthesized in yeast. Curr Opin Biotechnol. 1996;7(5):525–530. doi: 10.1016/s0958-1669(96)80056-5
  72. Berlec A, Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol. 2013;40(3–4):257–274. doi: 10.1007/s10295-013-1235-0
  73. Celik E, Calık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30(5):1108–1118. doi: 10.1016/j.biotechadv.2011.09.011
  74. Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–5317. doi: 10.1007/s00253-014-5732-5
  75. Dey S, Upadhyay C, Mohan CM, et al. Formation of subviral particles of the capsid protein VP2 of infectious bursal disease virus and its application in serological diagnosis. J Virol Methods. 2009;157(1):84–89. doi: 10.1016/j.jviromet.2008.11.020
  76. Pitcovski J, Gutter B, Gallili G, et al. Development and large-scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens. Vaccine. 2003;21(32):4736–4743. doi: 10.1016/s0264-410x(03)00525-5
  77. Khulape SA, Maity HK, Pathak DC, et al. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae. Acta Virol. 2015;59(3):240–246. doi: 10.4149/av_2015_03_240
  78. Subathra M, Santhakumar P, Narasu ML, et al. Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris. J Biosci. 2014;39(3):443–451. doi: 10.1007/s12038-014-9422-3
  79. Rage E, Marusic C, Lico C, et al. Current state-of-the-art in the use of plants for the production of recombinant vaccines against infectious bursal disease virus. Appl Microbiol Biotechnol. 2020;104(6):2287–2296. doi: 10.1007/s00253-020-10397-2
  80. Saint-Jore-Dupas C, Faye L, Gomord V. From planta to pharma with glycosylation in the toolbox. Trends Biotechnol. 2007;25(7):317–323. doi: 10.1016/j.tibtech.2007.04.008
  81. Rage E, Drissi Touzani C, Marusic C, et al. Functional characterization of a plant-produced infectious bursal disease virus antigen fused to the constant region of avian IgY immunoglobulins. Appl Microbiol Biotechnol. 2019;103(18):7491–7504. doi: 10.1007/s00253-019-09992-9
  82. Wu H, Singh NK, Locy RD, et al. Expression of immunogenic VP2 protein of infectious bursal disease virus in Arabidopsis thaliana. Biotechnol Lett. 2004;26(10):787–792. doi: 10.1023/b: bile.0000025878.30350.d5
  83. Bae JL, Lee JG, Kang TJ, et al. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine. 2003;21(25–26): 4052–4058. doi: 10.1016/s0264-410x(03)00360-8
  84. Streatfield SJ. Delivery of plant-derived vaccines. Expert Opin Drug Deliv. 2005;2(4):719–728. doi: 10.1517/17425247.2.4.719
  85. Partidos CD. Peptide mimotopes as candidate vaccines. Curr Opin Mol Ther. 2000;2(1):74–79.
  86. Wang YS, Fan HJ, Li Y, et al. Development of a multi-mimotope peptide as a vaccine immunogen for infectious bursal disease virus. Vaccine. 2007;25(22):4447–4455. doi: 10.1016/j.vaccine.2007.03.018
  87. Noad R, Roy P. Virus-like particles as immunogens. Trends Microbiol. 2003;11(9):438–444. doi: 10.1016/s0966-842x(03)00208-7
  88. Crisci E, Barcena J, Montoya M. Virus-like particle-based vaccines for animal viral infections. Inmunologia. 2013:32(3):102–116. doi: 10.1016/j.inmuno.2012.08.002
  89. Rogel A, Benvenisti L, Sela I, et al. Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV) confer protection. Virus Genes. 2003;27(2):169–175. doi: 10.1023/a:1025780611356
  90. Martinez-Torrecuadrada JL, Saubi N, Pages-Mante A, et al. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine. 2003;21(23):3342–3350. doi: 10.1016/s0264-410x(02)00804-6.117
  91. Taghavian O, Spiegel H, Hauck R, et al. Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One. 2013;8(12): e83210. doi: 10.1371/journal.pone.0083210
  92. Lee HJ, Kim JY, Kye SJ, et al. Efficient self-assembly and protective efficacy of infectious bursal disease virus-like particles by a recombinant baculovirus co-expressing precursor polyprotein and VP4. Virol J. 2015;12:177. doi: 10.1186/s12985-015-0403-4
  93. Tseng TY, Liu YC, Hsu YC, et al. Preparation of chicken anemia virus (CAV) virus-like particles and chicken interleukin-12 for vaccine development using a baculovirus expression system. Pathogens. 2019;8(4):262. doi: 10.3390/pathogens8040262
  94. Lee DH, Park JK, Song CS. Progress and hurdles in the development of influenza virus-like particle vaccines for veterinary use. Clin Exp Vaccine Res. 2014;3(2):133–139. doi: 10.7774/cevr.2014.3.2.133
  95. McGinnes LW, Pantua H, Laliberte JP, et al. Assembly and biological and immunological properties of Newcastle disease virus-like particles. J Virol. 2010;84(9):4513–4523. doi: 10.1128/JVI.01931-09
  96. D’Aoust MA, Lavoie PO, Couture MM-J, et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J. 2008;6(9):930–940. doi: 10.1111/j.1467-7652.2008.00384.x
  97. Marusic C, Drissi Touzani C, Bortolami A, et al. The expression in plants of an engineered VP2 protein of infectious bursal disease virus induces formation of structurally heterogeneous particles that protect from a very virulent viral strain. PLoS One. 2021;16(2): e0247134. doi: 10.1371/journal.pone.0247134
  98. Noh JY, Park JK, Lee DH, et al. Chimeric bivalent virus-like particle vaccine for H5N1 HPAI and ND confers protection against a lethal challenge in chickens and allows a strategy of differentiating infected from vaccinated animals (DIVA). PLoS One. 2016;11(9): e0162946. doi: 10.1371/journal.pone.0162946
  99. Xu XG, Tong DW, Wang ZS, et al. Baculovirus virions displaying infectious bursal disease virus VP2 protein protect chickens against infectious bursal disease virus infection. Avian Dis. 2011;55(2): 223–229. doi: 10.1637/9597-111210-Reg.1
  100. Wetzel D, Rolf T, Suckow M, et al. Establishment of a yeast-based VLP platform for antigen presentation. Microb Cell Fact. 2018;17(1):17. doi: 10.1186/s12934-018-0868-0
  101. Wang YS, Ouyang W, Liu XJ, et al. Virus-like particles of hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV. Vaccine. 2012;30(12):2125–2130. doi: 10.1016/j.vaccine.2012.01.040
  102. Chen TH, Chen TH, Hu CC, et al. Induction of protective immunity in chickens immunized with plant-made chimeric Bamboo mosaic virus particles expressing very virulent Infectious bursal disease virus antigen. Virus Res. 2012;166(1–2):109–115. doi: 10.1016/j.virusres.2012.02.021
  103. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(1):1465–1458. doi: 10.1126/science.1690918
  104. Oshop GL, Elankumaran S, Heckert RA. DNA vaccination in the avian. Vet Immunol Immunopathol. 2002;89(1–2):1–12. doi: 10.1016/s0165-2427(02)00189-7
  105. Robinson HL, Hunt LA, Webster RG. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine. 1993;11(9):957–960. doi: 10.1016/0264-410x(93)90385-b
  106. Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: The current status in 2015. Vaccine. 2016;34(2):202–211. doi: 10.1016/j.vaccine.2015.11.043
  107. Jazayeri SD, Poh CL. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res. 2019;50(1):78. doi: 10.1186/s13567-019-0698-z
  108. Mahmood MS, Siddique M, Hussain I, et al. Protection capability of recombinant plasmid DNA vaccine containing VP2 gene of very virulent infectious bursal disease virus in chickens adjuvanted with CpG oligodeoxynucleotide. Vaccine. 2006;24(22):4838–4846. doi: 10.1016/j.vaccine.2006.03.016
  109. Firouzamandi M, Moeini H, Hosseini SD, et al. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease. Int J Nanomedicine. 2016;11:259–267. doi: 10.2147/IJN.S92225
  110. Moeini H, Omar AR, Rahim RA, et al. Development of a DNA vaccine against chicken anemia virus by using a bicistronic vector expressing VP1 and VP2 proteins of CAV. Comp Immunol Microbiol Infect Dis. 2011;34(3):227–236. doi: 10.1016/j.cimid.2010.11.006
  111. Moeini H, Omar AR, Rahim RA, et al. Improving the potency of DNA vaccine against chicken anemia virus (CAV) by fusing VP1 protein of CAV to Marek’s Disease Virus (MDV) type-1 VP22 protein. Virol J. 2011;8:119. doi: 10.1186/1743-422X-8-119
  112. Rasoli M, Omar AR, Aini I, et al. Fusion of HSP70 gene of Mycobacterium tuberculosis to hemagglutinin (H5) gene of avian influenza virus in DNA vaccine enhances its potency. Acta Virol. 2010;54(1):33–39. doi: 10.4149/av_2010_01_33
  113. Chen HY, Zhao L, Wei ZY, et al. Enhancement of the immunogenicity of an infectious laryngotracheitis virus DNA vaccine by a bicistronic plasmid encoding glycoprotein B and interleukin-18. Antiviral Res. 2010;87(2):235–241. doi: 10.1016/j.antiviral.2010.05.009
  114. Sun JH, Yan YX, Jiang J, et al. DNA immunization against very virulent infectious bursal disease virus with VP2-4-3 gene and chicken IL-6 gene. J Vet Med B Infect Dis Vet Public Health. 2005;52(1):1–7. doi: 10.1111/j.1439-0450.2004.00813.x
  115. Zhang HH, Yang XM, Xie QM, et al. The potent adjuvant effects of chicken beta-defensin-1 when genetically fused with infectious bursal disease virus VP2 gene. Vet Immunol Immunopathol. 2010;136(1–2):92–97. doi: 10.1016/j.vetimm.2010.02.018
  116. Deb R, Dey S, Madhan Mohan C, et al. Development and evaluation of a Salmonella typhimurium flagellin based chimeric DNA vaccine against infectious bursal disease of poultry. Res Vet Sci. 2015:102:7–14. doi: 10.1016/j.rvsc.2015.07.004
  117. Maity HK, Dey S, Mohan CM, et al. Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of Mycobacterium tuberculosis in chickens. Vaccine. 2015;33(8):1033–1039. doi: 10.1016/j.vaccine.2015.01.006
  118. Huo S, Zhang J, Fan J, et al. Co-expression of chicken IL-2 and IL-7 enhances the immunogenicity and protective efficacy of a VP2-Expressing DNA vaccine against IBDV in chickens. Viruses. 2019;11(5):476. doi: 10.3390/v11050476
  119. Sawant PM, Verma PC, Subudhi PK, et al. Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes. Vet Immunol Immunopathol. 2011;144(1–2):36–44. doi: 10.1016/j.vetimm.2011.07.006
  120. Oshop GL, Elankumaran S, Vakharia VN, et al. In ovo delivery of DNA to the avian embryo. Vaccine. 2003;21(11–12):1275–1281. doi: 10.1016/s0264-410x(02)00624-2
  121. Negash T, Liman M, Rautenschlein S. Mucosal application of cationic poly(D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine. 2013;31(36):3656–3662. doi: 10.1016/j.vaccine.2013.06.011
  122. Zhao K, Zhang Y, Zhang X, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine. 2014;9(1):389–402. doi: 10.2147/IJN.S54226
  123. Jazayeri SD, Ideris A, Zakaria Z, et al. Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles. J Control Release. 2012;161(1):116–123. doi: 10.1016/j.jconrel.2012.04.015
  124. Darji A, Guzman CA, Gerstel B, et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell. 1997;91(6):765–775. doi: 10.1016/s0092-8674(00)80465-1
  125. Gentschev I, Dietrich G, Spreng S, et al. Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine. 2001;19(17–19): 2621–2628. doi: 10.1016/s0264-410x(00)00502-8
  126. Li L, Fang W, Li J, et al. Oral DNA vaccination with the polyprotein gene of infectious bursal disease virus (IBDV) delivered by the attenuated Salmonella elicits protective immune responses in chickens. Vaccine. 2006;24(33–34):5919–5927. doi: 10.1016/j.vaccine.2006.04.057
  127. Jazayeri SD, Ideris A, Zakaria Z, et al. Improved immune responses against avian influenza virus following oral vaccination of chickens with HA DNA vaccine using attenuated Salmonella typhimurium as carrier. Comp Immunol Microbiol Infect Dis. 2012;35(5):417–427. doi: 10.1016/j.cimid.2012.03.007
  128. Mahmood MS, Hussain I, Siddique M, et al. DNA vaccination with VP2 gene of very virulent infectious bursal disease virus (vvIBDV) delivered by transgenic E. coli DH5alpha given orally confers protective immune responses in chickens. Vaccine. 2007;25(44):7629–7635. doi: 10.1016/j.vaccine.2007.08.059
  129. Rutherford N, Mourez M. Surface display of proteins by gram-negative bacterial autotransporters. Microb Cell Fact. 2006;5:22. doi: 10.1186/1475-2859-5-22
  130. Thole JE, van Dalen PJ, Havenith CE, et al. Live bacterial delivery systems for development of mucosal vaccines. Curr Opin Mol Ther. 2000;2(1):94–99.
  131. Dieye Y, Hoekman AJ, Clier F, et al. Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol. 2003;69(12):7281–7288. doi: 10.1128/aem.69.12.7281-7288.2003
  132. Maqsood I, Shi W, Wang L, et al. Immunogenicity and protective efficacy of orally administered recombinant Lactobacillus plantarum expressing VP2 protein against IBDV in chicken. J Appl Microbiol. 2018;125(6):1670–1681. doi: 10.1111/jam.14073
  133. Wang Z, Yu Q, Fu J, et al. Immune responses of chickens inoculated with recombinant Lactobacillus expressing the haemagglutinin of the avian influenza virus. J Appl Microbiol. 2013;115(6):1269–1277. doi: 10.1111/jam.12325
  134. Lei H, Jin S, Karlsson E, et al. Yeast surface-displayed H5N1 avian influenza vaccines. J Immunol Res. 2016;2016:4131324. doi: 10.1155/2016/4131324
  135. Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res. 2019;19(2): foz007. doi: 10.1093/femsyr/foz007
  136. Cranenburgh R. DNA Vaccine Delivery. BioPharm International. 2011;2011(7).
  137. Zhou L, Zheng SJ. The Roles of MicroRNAs (miRNAs) in avian response to viral infection and pathogenesis of avian immunosuppressive diseases. Int J Mol Sci. 2019;20(21):5454. doi: 10.3390/ijms20215454
  138. Li J, Zheng SJ. Role of MicroRNAs in host defense against infectious bursal disease virus (IBDV) infection: A Hidden front line. Viruses. 2020;12(5):543. doi: 10.3390/v12050543
  139. Vilela J, Rohaim MA, Munir M. Application of CRISPR/Cas9 in understanding avian viruses and developing poultry vaccines. Front Cell Infect Microbiol. 2020;10:581504. doi: 10.3389/fcimb.2020.581504

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 ООО "Эко-Вектор"



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies