The role of environmental factors in the formation of the genetic structure of P. аbies populations

Cover Page


Summary: Background. Norway spruce (Picea abies (L.) Karst.) is one of the main forest forming spruce species in Europe. Their populations are characterized by the genetic heterogeneity between individuals in population. The genetic structure of P. abies populations studied supported a hypothesis of an environment impact on the degree of genetic differentiation among populations.

Materials and methods. Analysis of genetic diversity of natural populations in distinct geographical regions from North-West Russia, South-West Russia, South Norway were done using nuclear microsatellites. The needles were collected from the 20-30 adult trees in each geographical spot taking into account the local environment. The statistical calculations were performed with GenAlEx 6.5.03 and Structure 2.3.4.

Results. The analysis highlighted the environmental impact on the genetic diversity. The genetic structure of spruce cenopopulations from poor conditions are extremely different from those of cenopopulations growing under rich environmental conditions in one geographic region. The genetic differences between them are comparable with the genetic differences between spatially remote populations.

Conclusion. The role of the isolation by environment as a pattern in which genetic differentiation increases with environmental differences independent of the geographic distance is essential for genetic structure of spruce populations.

Kseniia V Zakharova

Author for correspondence.
Saint Petersburg State University
Russian Federation, Saint Petersburg, Russia

Geobotany and Plant Ecology Department

Kirill S Seits
Saint Petersburg State University
Russian Federation, Saint Petersburg, Russia

Geobotany and Plant Ecology Department

  • Попов П.П. Ель на востоке Европы и Западной Сибири. – Новосибирск: Наука, 1999. [Popov PP. Norway spruce in Eastern Europe and Western Siberia. Novosibirsk: Nauka; 1999. (In Russ.)]
  • Hamrick JL, Godt MJ, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species. New Forests. 1992;6:95-124. doi: 10.1007/BF00120641.
  • Bouillé M, Bousquet J. Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinacea): implications for the longterm maintainance of genetic diversity in trees. Am J Bot. 2005;92(1):63-73. doi: 10.3732/ajb.92.1.63.
  • Ratnam W, Rajora OP, Finkeldey R, et al. Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manage. 2014;333:52-65. doi: 10.1016/j.foreco.2014.06.008.
  • Meirmans PG. The trouble with isolation by distance. Mol Ecol. 2012;21:2839-2846. doi: 10.1111/j.1365-294X.2012.05578.x.
  • Wang IJ, Bradburd GS. Isolation by Environment. Mol Ecol. 2014;23:5649-5662. doi: 10.1111/mec.12938.
  • Kremer A, Ronce O, Robledo-Arnuncio JJ, et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology letters. 2012;15:378-392. doi: 10.1111/j.1461-0248.2012.01746.x.
  • Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH. Adaptation with gene flow across the landscape in a dune sunflower. Molecular Ecology. 2012;21:2078-2091. doi: 10.1111/j.1365-294X.2012.05454.x.
  • Василевич В.И., Бибикова Т.В. Сфагновые ельники европейской России // Бот. журн. – 2004. – Т. 89. – № 5. – С. 734–748. [Vasilevich VI, Bibikova TV. Sphagnumspruce forests in European Russia. Botanicheskyi Journal. 2004;89(5):734-748. (In Russ.)]
  • Рысин Л.П., Савельева Л.И. Еловые леса России. — М.: Наука, 2002. [Risin LP, Savelieva LI. Spruce forests of Russia. Moscow: Nauka; 2002. (In Russ.)]
  • Василевич В.И., Бибикова Т.В. Ельники кисличные европейской России // Бот. журн. – 2004. – Т. 89. – № 10. – С. 1573–1587. [Vasilevich VI, Bibikova TV. Woodsorrel spruce forests in European Russia. Botanicheskyi Journal. 2004;89(10):1573-1587. (In Russ.)]
  • Pfeiffer A, Olivieri AM, Morgante M. Identification and characterization of microsatellites in Norway spruce (Picea abies K). Genome. 1997;40:411-419. doi: 10.1139/g97-055.
  • Fluch S, Burg А, Kopecky D, et al. Characterization of variable EST SSR markers for Norway spruce (Picea abies L.). BMC Research notes. 2011;4:401. doi: 10.1186/1756-0500-4-401.
  • Rungis D, Bérubé Y, Zhang J, et al. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet. 2004;109:1283-1294. doi: 10.1007/s00122-004-1742-5.
  • Scotti I, Paglia GP, Magni F, Morgante M. Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) through dot-blot selection. Theor Appl Genet. 2002;104:1035-1041. doi: 10.1007/s00122-001-0843-7.
  • Scotti I, Magni F, Paglia GP, Morgante M. Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor Appl Genet. 2002;106:40-50. doi: 10.1007/s00122-002-0986-1.
  • Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537-9. doi: 10.1093/bioinformatics/bts460.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959.
  • Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801-1806. doi: 10.1093/bioinformatics/btm233.
  • Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol. 2004;4:137-8. doi: 10.1046/j.1471-8286.2003.00566.x.
  • Tollefsrud MM, Sonstebo JH, Brochmann C, et al. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity. 2009;102:549-62. doi: 10.1038/hdy.2009.16.
  • Потокина Е.К., Орлова Л.В., Вишневская М.С., и др. Генетическая дифференциация популяций ели на Северо-Западе России по результатам маркирования микросателлитных локусов // Экол. генет. – 2012. – Т. 10. – № 2. – С. 4049. [Potokina EK, Orlova LV, Vishnevskaya MS, et al. Genetic differentiation of spruce populations in Northwest Russia revealed with microsatellite markers. Ecological Gene tics. 2012;10(2):40-49. (In Russ.)]
  • Попова Т.А., Березкина Л.И., Бычкова И.А., и др. Природный парк «Вепсский лес». – СПб.: Вести, 2005. [Popova TA, Berezkina LI, Bichkova IA, et al. Natural park “Vepssky forest”. Saint Petersburg: Vesti; 2005. (In Russ.)]
  • Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583-90.
  • Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research. 1967;27(2):209-220.
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611-2620. doi: 10.1111/j.1365-294X.2005. 02553.x.
  • Lagercrantz U, Ryman N. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozyme variation. Evolution. 1990;44:38-53. doi: 10.2307/2409523.
  • Androsiuk P, Shimono A, Westin J, et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 2013;62(3):127-136.
  • Попов П.П. Популяционно-расовая дифференциация Picea abies и Picea obovata (Pinaceae) // Бот. журн. – 2009. – Т. 94. – № 9. – С. 1317–1334. [Popov PP. Population and race differentiation of Picea abies and Picea obovata (Pinaceae). Botanicheskyi Journal. 2009;94(9):1317-1334. (In Russ.)]
  • Savolainen O, Pyhajarvi T, Knurr T. Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst. 2007;38:595-619. doi: 10.1146/annurev.ecolsys.38.091206.095646.

Supplementary files

There are no supplementary files to display.


Abstract - 266

PDF (Russian) - 197

Copyright (c) 2017 Zakharova K.V., Seits K.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.