Циркадный ритм матери и его значение для здоровья потомства

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзоре представлены данные о структуре циркадной системы организма и ее уникальной реорганизации при наступлении беременности. Циркадная система играет фундаментальную роль в поддержании материнского гомеостаза и создании оптимальных условий для осуществления генетической программы развития плода. Описаны механизмы защитного влияния циркадного ритма материнского мелатонина — основного мессенджера биоритмов. Рассмотрены механизмы и последствия нарушений материнской циркадианной адаптации у беременных женщин при воздействии неблагоприятных условий окружающей среды (работы в ночное время, стресса, нерегулярного питания и др.) и заболеваний, обусловленных хронодеструкцией (ожирения, сахарного диабета и др.). Выяснение состояния циркадной системы организма женщины, в частности, наличия суточного ритма продукции мелатонина, определит новый подход к оценке риска и профилактике сердечно-сосудистых, метаболических, нейроэндокринных и психических расстройств у потомства.

Полный текст

Доступ закрыт

Об авторах

Инна Ивановна Евсюкова

Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта

Автор, ответственный за переписку.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198

д-р мед. наук, профессор

Россия, 199034, Санкт-Петербург, Менделеевская линия, д. 3

Список литературы

  1. Menaker M., Murphy Z.C., Sellix M.T. Central control of peripheral oscilators // Curr. Opin. Neurobiol. 2013. Vol. 23. No. 5. P. 741−746. doi: 10.1016/j.conb.2013.03.003
  2. Kvetnoy I., Ivanov D., Mironova E., et al. Melatonin as the cornerstone of neuroimmunoendocrinology // Int. J. Mol. Sci. 2022. Vol. 23. No. 3. P. 1835. DOI: 10.3390/ ijms23031835.
  3. Green C.B. Circadian posttranscriptional regulatory mechanisms in mammals // Cold Spring Harb. Perspect. Biol. 2018. Vol. 10. No. 6. P. a030692. doi: 10.1101/cshperspect.a030692
  4. Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system // Annu Rev. Physiol. 2010. Vol. 72. P. 517−549. doi: 10.1146/annurev-physiol-021909-135821
  5. von Gall C. The effects of light and the circadian system on rhythmic brain function // Int. J. Mol. Sci. 2022. Vol. 23. No. 5. P. 2778. doi: 10.3390/ijms23052778
  6. Albrecht U. Timing to perfection: The biology of central and peripheral circadian clocks // Neuron. 2012. Vol. 74. No. 2. P. 246–260. doi: 10.1016/j.neuron.2012.04.006
  7. Takahashi J.S. Molecular architecture of the circadian clock in mammals. In: A time for metabolism and hormones. Eds. P. Sassone-Corsi, Y. Christen. Berlin: Springer, 2016. P. 13–24. doi: 10.1007/978-3-319-27069-2_2
  8. Bass J. Circadian mechanisms in bioenergetics and cell metabolism // A Time for Metabolism and Hormones. Eds. P. Sassone-Corsi, Y. Christen. Berlin: Springer, 2016. P. 25−32. doi: 10.1007/978-3-319-27069-2_3
  9. Schrader J.A., Nunez A.A., Smale L. Changes in and dorsal to the rat suprachiasmatic nucleus during early pregnancy // Neuroscience. 2010. Vol. 171. No. 2. P. 513−523. doi: 10.1016/j.neuroscience.2010.08.057
  10. Torres-Farfan C., Mendez N., Ehrenfeld P., Seron-Ferre M. In utero circadian changes; facing light pollution // Current Opinion in Physiology. 2020. Vol. 13. P. 128–134. doi: 10.1016/j.cophys.2019.11.005
  11. Martin-Fairey C.A., Zhao P., Wan L., et al. Pregnancy induces an earlier chronotype in both mice and women // J. Biol. Rhythm. 2019. Vol. 34. No. 3. P. 323–331. doi: 10.1177/0748730419844650
  12. Wharfe M.D., Mark P.J., Waddell B.J. Circadian variation in placental and hepatic clock genes in rat pregnancy // Endocrinology. 2011. Vol. 152. No. 9. P. 3552−3560. doi: 10.1210/en.2011-0081
  13. Lain K.Y., Catalano P.M. Metabolic changes in pregnancy // Clin. Obstet. Gynecol. 2007. Vol. 50. No. 4. P. 938−948. doi: 10.1097/GRF.0b013e31815a5494
  14. Wharfe M.D., Mark P.J., Wyrwoll C.S., et al. Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids // J. Endocrinology. 2016. Vol. 228. No. 3. P. 135–147. doi: 10.1530/JOE-15-0405
  15. Pan X., Taylor M.J., Cohen E., et al. Circadian clock, time-restricted feeding and reproduction // Int. J. Mol. Sci. 2020. Vol. 21. No. 3. P. 831. doi: 10.3390/ijms21030831
  16. Kaur S., Teoh A.N., Shukri N.H.M., et al. Circadian rhythm and its association with birth and infant outcomes: research protocol of a prospective cohort study // BMC Pregnancy and Childbirth. 2020. Vol. 20. No. 1. P. 96. doi: 10.1186/s12884-020-2797-2
  17. Hsu C.-N., Tain Y.-L. Light and circadian signaling pathway in pregnancy: Programming of adult health and disease // Int. J. Mol. Sci. 2020. Vol. 21. No. 6. P. 2232. doi: 10.3390/ijms21062232
  18. Serón-Ferré M., Richter H.G., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus and newborn: Significance of interactions with maternal physiology and the environment // Prenatal and Postnatal Determinants of Development. Neuromethods. Vol. 109. New York: Humana Press, 2016. P. 147−165. doi: 10.1007/978-1-4939-3014-2_7
  19. Waddell B.J., Wharfe M.D., Crew R.C., Mark P.J. A rhythmic placenta? Circadian variation Clock genes and placental function // Placenta. 2012. Vol. 33. No. 7. P. 533−539. doi: 10.1016/j.placenta.2012.03.008
  20. Valenzuela F.J., Vera J., Venegas C., et al. Circadian system and melatonin hormone: Risk factors for complications during pregnancy // Obstet. Gynecol. Int. 2015. Vol. 2015. P. 825802. doi: 10.1155/2015/825802
  21. Nakamura N.Y., Tamura H., Kashida S., et al. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy // J. Pineal Res. 2001. Vol. 30. No. 1. P. 29−33. doi: 10.1034/j.1600-079x.2001.300104.x
  22. Erren T.S., Reiter R.J. Melatonin: a universal time messenger // Neuro. Endocrinol. Lett. 2015. Vol. 36. No. 3. P. 187−192.
  23. Mark P.J., Crew R.C., Wharfe M.D., Waddell B.J. Rhythmic three-part harmony: the complex interaction of maternal, placental and fetal circadian systems // J. Biol. Rhythms. 2017. Vol. 32. No. 6. P. 534−549. doi: 10.1177/0748730417728671
  24. Astiz M., Oster H. Feto-maternal crosstalk in the development of the circadian clock System // Front. Neurosci. 2021. Vol. 14. P. 631687. doi: 10.3389/fnins.2020.631687
  25. Cipolla-Neto J., do Amaral F.G. Melatonin as a hormone: New physiological and clinical insights // Endocrine Reviews. 2018. Vol. 39. P. 990−1028. doi: 10.1210/er.2018-00084
  26. Edwards S.M., Solveig A., Dunlop A.L., Corwin E.J. The maternal gut microbiome during pregnancy // MCN Am. J. Matern. Child. Nurs. 2017. Vol. 42. No. 6. P. 310−317. doi: 10.1097/NMC.0000000000000372
  27. Polidarova L., Olejnikova L., Pauslyova L., et al. Development and entrainment of the colonic circadian clock during ontogenesis // Am. J. Physiol. Gastrointest. Liver Physiol. 2014. Vol. 306. No. 4. P. 346−356. doi: 10.1152/ajpgi.00340.2013
  28. Thomas L., Drew J.E., Abramovich D.R., Williams L.M. The role of melatonin in the human fetus (review) // Int. J. Mol. Med. 1998. Vol. 1. No. 3. P. 539−543. doi: 10.3892/ijmm.1.3.539
  29. Mirmiran M., Maas Y.G., Ariagno R.L. Development of fetal and neonatal sleep and circadian rhythms // Sleep. Med. Rev. 2003. Vol. 7. No. 4. P. 321−334. doi: 10.1053/smrv.2002.0243
  30. Arendt J., Skene D.J. Melatonin as chronobiotic // Sleep Med. Rev. 2005. Vol. 9. No. 1. P. 25−39. doi: 10.1016/j.smrv.2004.05.002
  31. Seron-Ferre M., Mendez M., Abarzua-Catalan L. et al. Circadian rhythms in the fetus // Mol. Cell. Endocrinology. 2012. Vol. 349. No. 1. P. 68−75. doi: 10.1016/j.mce.2011.07.039
  32. Oster H., Challet E., Ott V., et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids // Endocr. Rev. 2017. Vol. 38. P. 3–45. doi: 10.1210/er.2015-1080
  33. Lužná V., Houdek P., Liška K. Sumová A. Challenging the integrity of rhythmic maternal signals revealed gene-specific responses in the fetal suprachiasmatic nuclei // Front. Neurosci. 2021. Vol. 14. P. 613531. doi: 10.3389/fnins.2020.613531
  34. Nehme P.A., Amaral F.G., Middleton B., et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series // Neurobiol. Sleep Circadian Rhythm. 2019. Vol. 6. P. 70–76. doi: 10.1016/j.nbscr.2019.04.001
  35. Forrestel A.C., Miedlich S.U., Yurcheshen M., et al. Chronomedicine and type 2 diabetes: shining some light on melatonin // Diabetologia. 2017. Vol. 60. No. 5. P. 808−822. doi: 10.1007/s00125-016-4175-1
  36. Nduhirabandi F., du Toit E.F., Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? // Acta Physiol. 2012. Vol. 205. P. 209−223. doi: 10.1111/j.1748-1716/2012.0410.x.
  37. Tranquilli A.L., Turi A., Giannubilo S.R., Garbati E. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure // Gynecol. Endocrinol. 2004. Vol. 18. No. 3. P. 124−129. doi: 10.1080/09513590410001667841
  38. Guan Q., Wang Z., Cao J., et al. Mechanisms of melatonin in obesity: A review // Int. J. Mol. Sci. 2022. Vol. 23. No. 1. P. 218. doi: 10.3390/ijms23010218
  39. Begtrup L.M., Specht I.O., Hammer P.E.C., et al. Night work and miscarriage: A Danish nationwide register-based cohort study // Occup. Environ. Med. 2019. Vol. 76. No. 5. P. 302–308. doi: 10.1136/oemed-2018-105592
  40. Suzumori N., Ebara T., Matsuki T., et al. Effects of long working hours and shift work during pregnancy on obstetric and perinatal outcomes: A large prospective cohort study-Japan Environment and Children’s Study // Birth. 2020. Vol. 47. No. 1. P. 67–79. doi: 10.1111/birt.12463
  41. Davari M.H., Naghshineh E., Mostaghaci M., et al. ShiftWork effects and pregnancy outcome: A historical cohort study // J. Family Reprod. Health. 2018. Vol. 12. No. 2. P. 84–88.
  42. Plano S.A., Casiraghi L.P., Moro P., et al. Circadian and metabolic effects of light: implications in weight homeostasis and health // Front. Neurol. 2017. Vol. 8. P. 558. doi: 10.3389/fneur.2017.00558
  43. Fishbein A.B., Knutson K.L., Zee P.C. Circadian disruption and human health // J. Clin. Invest. 2021. Vol. 131. No. 19. P. e148286. doi: 10.1172/JCI148286
  44. Halabi D., Richter H.G., Mendez N., et al. Maternal chronodisruption throughout pregnancy impairs glucose homeostasis and adipose tissue physiology in the male rat offspring // Front. Endocrinol. 2021. Vol. 12. P. 678468. doi: 10.3389/fendo.2021.678468
  45. Strohmaier S., Devore E.E., Vetter C., et al. Night shift work before and during pregnancy in relation to depression and anxiety in adolescent and young adult offspring // Eur. J. Epidemiol. 2019. Vol. 34. No. 7. P. 625–635. doi: 10.1007/s10654-019-00525-2
  46. Peng X., Fan R., Xie L., et al. A growing link between circadian rhythms, type 2 diabetes mellitus and alzheimer’s disease // Int. J. Mol. Sci. 2022. Vol. 23. No. 1. P. 504. doi: 10.3390/ijms23010504
  47. Suarez-Trujillo A., Hoang N., Robinson L., et al. Effect of circadian system disruption on the concentration and daily oscillations of cortisol, progesterone, melatonin, serotonin, growth hormone, and core body temperature in periparturient dairy cattle // J. Dairy Sci. 2022. Vol. 105. No. 3. P. 2651−2668. doi: 10.3168/jds.2021-20691
  48. Hemmeryckx B., Frederix L., Lijnen H.R. Deficiency of Вmal1 disrupts the diurnal rhythm of haemostasis // Exp. Gerontol. 2019. Vol. 118. P. 1–8. doi: 10.1016/j.exger.2018.12.017
  49. Voiculescu S.E., Zygouropoulos N., Zahiu C.D., Zagrean A.M. Role of melatonin in embryo fetal development // J. Med. Life. 2014. Vol. 7. No. 4. P. 488−492.
  50. Nagai R., Watanabe K., Wakatsuki A., et al. Melatonin preserves fetal growth in rats by protecting against ischemia-reperfusion-induced oxidative-nitrosative mitochondrial damage in placenta // J. Pineal Res. 2008. Vol. 45. No. 3. P. 271−276. doi: 10.1111/j.1600-079X.2008.00586x
  51. Berbets A., Koval H., Barbe A., et al. Melatonin decreases and cytokines increase in women with placental insufficiency // J. Matern. Fetal Neonatal. Med. 2021. Vol. 34. No. 3. P. 373−378. doi: 10.1080/1476058.2019.1608432
  52. Varcoe T.J., Gatford K.L., Kennaway D.J. Maternal circadian rhythms and the programming of adult health and disease // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017. Vol. 314. No. 2. P. 231–241. doi: 10.1152/ajpregu.00248.2017
  53. Torres-Farfan C., Cipolla Neto J., Herzog E.D. Editorial: Decoding the fetal circadian system and its role in adult sickness and health: Melatonin, a dark history // Front. Endocrinol (Lausanne). 2020. Vol. 11. P. 380. doi: 10.3389/fendo.2020
  54. Reiter R.J., Tan D.X., Korkmaz A., Rosales-Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology // Hum. Reprod. Update. 2014. Vol. 20. No. 2. P. 293−307. DOI. 10.1093/humupd/dmt054
  55. Mendez N., Halabi D., Spichiger C., et al. Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease // Endocrinology. 2016. Vol. 157. No. 12. P. 4654–4668. doi: 10.1210/en.2016-1282
  56. Carmona P., Pérez B., Trujillo C., et al. Long-term effects of altered photoperiod during pregnancy on liver gene expression of the progeny // Front. Physiol. 2019. Vol. 10. P. 1377. doi: 10.3389/fphys.2019.0137
  57. Salazar E.R., Richter H.G., Spichiger C., et al. Gestational chronodisruption leads to persistent changes in the rat fetal and adult adrenal clock and function // J. Physiol. 2018. Vol. 596. P. 5839−5857. doi: 10.1113/JP276083
  58. Lamadé E.K., Hendlmeier F., Wudy S.A., et al. Rhythm of fetoplacental 11β-hydroxysteroid dehydrogenase type 2-fetal protection from morning maternal glucocorticoids // J. Clin. Endocrinol. Metab. 2021. Vol. 106. No. 6. P. 1630–1636. doi: 10.1210/clinem/dgab113
  59. Ryan J., Mansell T., Fransquet P., Saffery R. Does maternal mental well-being in pregnancy impact the early human epigenome? // Epigenomics. 2017. Vol. 9. No. 3. P. 313−332. doi: 10.2217/epi-2016-0118
  60. Sacchi C., Marino C., Nosarti C., et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic. Review and meta-analysis // JAMA Pediatr. 2020. Vol. 174. No. 8. Р. 772−781. doi: 10.1001/jamapediatrics.2020.1097
  61. Vollmer B., Edmonds C.J. School age neurological and cognitive outcomes of fetal growth retardation or small for gestational age birth weight // Front. Endocrin. 2019. Vol. 10. P. 186. doi: 10.3389/fendo.2019.00186
  62. Bhunu B., Intapad I.R.S. Insights into the mechanisms of fetal growth restriction-induced programming of hypertension // Integr. Blood Pressure Control. 2021. Vol. 14. P. 141−152. doi: 10.2147/IBPC.S312868
  63. Amaral F.G.D., Andrade-Silva J., Kuwabara W.M.T., Cipolla-Neto J. New insights into the function of melatonin and its role in metabolic disturbances // Expert. Rev. Endocrinol. Metab. 2019. Vol. 14. No. 4. P. 293−300. doi: 10.1080/17446651.2019.1631158
  64. Ivanov D.O., Evsyukova I.I., Mironova E.S., et al. Maternal melatonin deficiency leads to endocrine pathologies in children in early ontogenesis // Int. J. Mol. Sci. 2021.Vol. 22. P. 2058. doi: 10.3390/ijms22042058
  65. Korkmaz A., Rosales-Corral S., Reiter R.J. Gene regulation by melatonin linked to epigenetic phenomena // Gene. 2012. Vol. 503. No. 1. P. 1−11. doi: 10.1016/j.gene.2012.04.040
  66. Perez-Gonzalez A., Castaneda-Arriaga R., Alvarez-Idaboy J.R., et al. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA // J. Pineal. Res. 2019. Vol. 66. No. 2. P. e12539. doi: 10.1111/jpi.12539
  67. Ireland K.E., Maloyan, A., Myatt L. Melatonin improves mitochondrial respiration in syncytiotrophoblasts from placentas of obese women // Reprod. Sci. 2018. Vol. 25. No. 1. P. 120−130. DOI: 101177/1933719117704908
  68. Xu D.-X., Wang H., Ning H., et al. Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-infammatory cytokines in maternal serum, amniotic fluid, fetal live, and fetal brain // J. Pineal Res. 2007. Vol. 43. No 1. P. 74−79. DOI: 10.1111.j.1600-079X.2007.004445.x
  69. Chitimus D.M., Popescu M.R., Voiculescu S.E., et al. Melatonin’s impact on antioxidative and anti-Inflamatory reprogramming in homeostasis and disease // Biomolecules. 2020. Vol. 10. No. 9. P. 1211. doi: 10.3390/biom1009211
  70. Tan D.X., Manchester L.C., Qin L., Reiter R.J. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics // Int. J. Mol. Sci. 2016. Vol. 17. No. 12. P. 2124. doi: 10.3390/ijms17122124
  71. Kopustinskiene D.M., Bernatoniene J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease // Pharmaceutics. 2021. Vol. 13. No. 2. P. 129. doi: 10.3390/pharmaceutics13020129
  72. Mendez N., Abarzua-Catalan L., Vilches N., et al. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light // PloS ONE. 2012. Vol. 7. No. 8. P. e42713. doi: 10.1371/journal.pone0042713
  73. Hansell J.A., Richter H.J., Camm E.J., et al. Matrenal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy // J. Pineal. Res. 2021. Vol. 72. No. 1. P. e12766. doi: 10.1111/jpi.12766

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Эко-Вектор», 2022



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах