Neurology of a fetus - opportunity and prospect of research

Cover Page


Cite item

Full Text

Abstract

The article presents literary review about fetal CNS development and its disorders, own investigation results of pathogenesis, diagnostic methods of fetal neurological disorders in different obstetrical and extragenital pathology in pregnant women.

Full Text

Из большого круга проблем, которые изучает перинатология, особое место принадлежит нарушениям развития ЦНС, поскольку она играет координирующую и интегрирующую роль как в процессах формирования, так и последующего функционирования практически всех других жизненно важных систем человеческого организма. Более четкое представление о значимости психоневрологических болезней для населения планеты дает сравнительно недавно разработанный показатель DALY (Disability-adjusted life year), отражающий число лет полноценной жизни, утраченных человеком вследствие различных болезней. По данным ВОЗ в категории неинфекционных болезней психоневрологические расстройства превосходят все остальные нозологии, кроме ишемической болезни сердца, включая онкологические заболевания. При этом умственные и неврологические нарушения составляют 10,5 % всех потерь, составляющих значение показателя DALY. Согласно данным отчета ВОЗ за 2001 год, около 450 миллионов людей в мире страдают расстройствами психического здоровья, которые в большинстве случаев ведут к полной утрате трудоспособности [20]. В России 1,5—2,5 на 1000 родившихся живыми новорожденных имеют церебральный паралич, умственную отсталость и другие неврологические расстройства. Нарушения физического и нервно-психологического развития выявляются у 26,4 % детей первого года жизни. Среди них у 20,4 % детей отмечаются минимальные мозговые дисфункции, проявляющиеся повышенной нервно-рефлекторной возбудимостью, приходящим мышечным гипертонусом, задержкой моторного развития, нарушением сна. У 5,9 % наблюдаются врожденные отклонения со стороны нервной системы в виде гемипареза, гипертензионно-гидроцефального синдрома, задержки двигательного и предречевого развития [7]. Это обусловлено, в первую очередь, высокой частотой внутриутробной гипоксии и значительной частотой внутриутробного инфицирования. Все вышеперечисленное объясняет пристальное внимание специалистов к вопросам изучения нарушений развития ЦНС, приведшее в последнее время к формированию нового направления в перинатологии — перинатальной неврологии.

Недостаточное количество нейронов во внутриутробном периоде не восполняется после рождения, возможна лишь их функциональная реабилитация, которая нередко является недостаточной. Кроме того, в отличие от многих других органов, критический период развития которых укладывается в первые 2 месяца беременности, развитие мозга в целом длится в течение всей внутриутробной жизни, начиная с 3-х недель беременности и вплоть до пубертантного периода. Он насыщен критическими периодами различных стадий его созревания. Характер повреждений, возникающих у плода при различных патологических воздействиях, зависит от периода развития плода и спурта тех процессов, которые у него в этот момент происходят.

Развитие ЦНС начинается в раннем онтогенезе и состоит из 4-х основных процессов: закладки нервной трубки; образования мозговых пузырей и разделения на парные отделы переднего и заднего из них; миграции клеток (из зоны их возникновения к местам окончательной локализации) и их агрегации, в результате которой формируются идентифицируемые участки мозга; дифференцировки нервных клеток, включающей разрастание дендритов, формирование синапсов и процессы апоптоза; последовательной миелинизации проводящих путей головного и спинного мозга. Наиболее интенсивный рост мозга наблюдается с 24-й недели беременности, а пик его развития приходится на ее конец.

В ранние сроки беременности могут быть нарушены стадии образования нейронов и их миграции (фаза цито- и гистогенеза). Спурт образования основных клеток мозга — нейронов, так назывемый «малый спурт», приходится с 10-й по 18-ю неделю беременности. Процесс превращения части клеток эктодермы в специализированную ткань (нейроэпителий), из которой развивается спинной и головной мозг, называется нейральной индукцией. До 8 недель беременности преобладает процесс пролиферации нейральных и глиальных клеток. Еще не достигнув зрелости, нейробласты (будущие неокортикальные нейроны), которые формируются во внутренней части нервной трубки возле полости, которая в дальнейшем превратится в третий желудочек мозга, перемещаются из средней части развивающегося мозга к его периферии в область будущей коры. Для достижения своей окончательной позиции они должны преодолеть существенное расстояние, в сотни раз превышающее их собственный размер. В экспериментальных исследованиях было показано, что механизм миграции клеток таков, что он обеспечивает правильную топическую трансформацию ростковой зоны в кору [10]. При этом наиболее рано сформировавшиеся клетки будут находиться в наиболее глубоком слое коры, а те из них, которые сформировались позже, займут более поверхностные слои коры. Этот процесс в основном завершается к 6-ти месяцам жизни плода. Повреждение процесса миграции нейронов наблюдается при дефиците питания, воздействии токсинов, в том числе при алкогольном синдроме плода. Повреждающее действие в период развития нейробластов (цитогенеза) приводит к микроцефалии и отставанию в умственном развитии. Процесс миграции нейронов высокочувствителен к различным физическим (радиация, гипертермия), химическим (токсины, лекарственные препараты, алкоголь) и биологическим (вирусные инфекции) воздействиям, а также к генетическим мутациям. Такие тяжелые пороки развития как микроцефалия, шизэнцефалия, макрогирия и полимикрогирия могут быть полностью или частично обусловлены нарушением миграции нервных клеток.

В процессе созревания нейронов происходит интенсивный рост дендритов и образование множества синапсов, а также развитие других клеточных структур, различающихся по морфологии. Наблюдается формирование макро- и микроглии, количество клеток которой значительно преобладает над количеством нейронов, общее число которых превышает 100 биллионов [14]. Глия в ЦНС выполняет опорную, трофическую, разграничительную, секреторную и защитную функции. Спурты развития глии, дендритов и синапсов начинаются после 25-й недели беременности и продолжаются после рождения. Интенсивная пролиферация глиальных клеток, сопровождающаяся интенсивным ростом дендритов и формированием синапсов, называют «большим спуртом» [12]. Окончательная структура и организация нейронов зависит от регрессивных процессов, которые происходят на заключительных стадиях развития мозга. В различных отделах нервной системы эти процессы могут включать в себя запрограммированную гибель клеток, а также элиминацию аксонов и ликвидацию синапсов. Данные механизмы являются завершающими в процессе развития нервной системы. Общее число нейронов регулируется процессом их избирательной гибели — апоптоза, ген-регулируемого процесса, на первом этапе которого наблюдается распад клетки с образованием апоптозных телец, на втором — лизис апоптозных телец окружающими клетками или фагоцитами. Одним из факторов, инициирующим апоптоз, является ген р53 - ген- супрессор опухолевого роста. Он проявляет свое влияние в целых клеточных популяциях, а также регулирует клеточный цикл, вызывая его блокирование в стадии G1 в ответ на повреждение ДНК. Одним из наиболее активных и широко распостраненных антиапоптозных факторов является мембранный белок bcl-2, который локализуется в клетке на мембранах митохондрий, эндоплазматической сети и ядерной оболочки [11]. Имеются данные о том, что часть зрелых нейронов у человека синтезируют белок bcl-2, что, вероятно, обеспечивает им устойчивость при воздействии различных неблагоприятных факторов [ 13]. Об экспрессии этого белка клетками развивающегося мозга известно мало. Влияние повреждающих факторов на процессы апоптоза в антенатальном периоде могут приводить к вовлечению в процессы клеточной гибели нейрональных клеточных популяций, необходимых для нормального развития головного мозга.

В процессе формирования ЦНС образуется избыточное количество синапсов и наблюдается излишняя плотность их распределения. Небольшая часть синапсов появляется еще на ранних этапах эмбриогенеза, основной же синаптогенез происходит на поздних стадиях онтогенеза. В мозгу человека насчитывают примерно 100 триллионов синапсов [14]. В основе элиминации синапсов лежит не снижение количества самих синапсов, а уменьшение числа аксонов, иннервирующих каждую клетку. При этом синхронная импульсная активность разных аксонов, изначально иннервирующих клетку, препятствует элиминации синапсов, а асинхронная активность способствует ей. Нарушение синаптогенеза может приводить к развитию таких пороков ЦНС, как синдром Патау и болезнь Дауна.

Вся сложная деятельность ЦНС осуществляется через мембраны, формирование и функционирование которых невозможно без липидов, содержание которых в них очень высокое, а представленность гетерогенна. Около половины от общего количества липидов составляют фосфолипиды, а четверть — холестерин и гликолипиды. «Химический спурт», сопровождающийся быстрым синтезом липидов, начинается после 32-й недели и продолжается постанатально [17]. Самым высоким содержанием липидов характеризуются миелиновые оболочки - мембранные структуры, обеспечивающие электрическую изоляцию тел нейронов и их отростков с целью исключения неадекватного взаимодействия между нейронами при распространении возбуждения, что гарантирует высокую скорость проведения нервного импульса. Процесс миелинизации начинается в стволе мозга и достигает полушарий к концу беременности. При этом моторные нервы миелинизируются только после рождения. По данным ряда авторов, полученным при МРТ у недоношенных детей, наиболее тяжелые гипоксически-ишемические повреждения мозга у них коррелируют со слабой степенью миелинизации и соответственно с более выраженными неврологическими нарушениями в будущем [21]. Неврологические характеристики отклонений от нормы функции мозга при недоразвитии дендритов, синапсов и неполноценной миелинизации у детей многообразны, так как эти процессы необходимы для пластичности высших отделов нервной системы, их ассоциативной функции, способности к абстрагированию, т. е. для полноценного интеллектуального и психосоматического развития.

В последнее десятилетие в литературе широко обсуждается вопрос о роли системы фосфокреатин-креатинкиназа в формировании нейрональных расстройств, а также о возможности использовать определение уровней нейроспецифических креатинкиназы и енолазы в качестве критериев перинатальной энцефалопатии. Система фосфокреатин-креатинкиназа является комплексной двухферментной системой мозга и других тканей с высокими энергетическими потребностями. Под влиянием креатинкиназы происходит адаптация синтеза АТФ к энергетическим потребностям клетки, а также ее транспорт из митохондрий в места утилизации. АТФ, в свою очередь, играет фундаментальную роль в функционировании ЦНС. В физиологических условиях она синтезируется преимущественно путем аэробного гликолиза, включая окислительное фосфорилирование, и небольшая ее часть — путем анаэробного гликолиза. Креатикиназа является необходимым компонентом для поддержания энергетического гомеостаза в возбудимых тканях, а ее изоформы связывают между собой различные пути энергетического метаболизма. ВВ-креатинкиназа является специфичным для мозга изоферментом, который обнаруживается главным образом в астроцитах и нейронах. Являясь эволюционно наиболее древней, ВВ-изоформа креатинкиназы является преобладающей в различных органах человека и животных на ранних этапах эмбриогенеза [16]. Высоким содержанием этого изофермента характеризуется плацента. По мере развития эмбриона во всех тканях, кроме нервной, ВВ-креатинкиназа переходит преимущественно в ММ- и МВ-изоформы фермента, что обусловлено экспрессией соответствующих генов. ВВ-КК обнаружена в синаптических пузырьках и плазматической мембране нейрона. Она участвует в освобождении нейротрансмиттеров, поддержании мембранного потенциала, восстановлении ее ингредиентов.

Нарушение функционирования креатинкиназы и, вследствие этого, энергетического обмена может быть связано с гипоксией [15]. Считают, что на фоне гипоксии у плода вследствие нарушения проницаемости мембран астроцитов и нейронов наблюдается переход ВВ-КК в общий кровоток. Ряд исследователей наблюдали увеличение содержания этого изофермента в ликворе новорожденных, перенесших гипоксию в родах. Е.Weiss et al. [24] наблюдали повышенную активность ВВ-КК у плодов, имевших нулевой или отрицательный конечный диастолический кровоток в артерии пуповины по результатам допплерометрии. Авторы рассматривают этот факт как показатель повреждения клеток мозга. Креатин- киназа вместе с нейроспецифической енолазой принадлежат к группе белков, известной как «медленный компонент b». Оба этих белка синтезируются в телах нейронов и с помощью аксонального транспорта доставляются в терминали аксонов.

Различные исследователи считают, что повышение уровня нейроспецифической енолазы в ликворе и сыворотке крови является критерием повреждения нейронов, возникающего на фоне ишемии [9].

Процессы цито- и гистогенеза, происходящие в центральной нервной системе плода на протяжении всего антенатального периода, сопровождаются ее функциональным созреванием. Оно активно продолжается у ребенка после рождения на протяжении первого года жизни, а также в дальнейшем в течение пубертатного развития. Наиболее тонким показателем зрелости ЦНС плода является организация его функциональных состояний в цикл активность—покой, о котором у плода человека можно судить по характеру изменений «поведения» плода — его двигательной и дыхательной активности, сердечной деятельности, регистрация которых стала доступной с помощью ультразвуковых приборов. Динамическое наблюдение за становлением этих основных показателей и характером их взаимосвязей лежит в основе оценки функционального созревания ЦНС плода.

Двигательную активность у плода человека можно зарегистрировать при ультразвуковом исследовании, начиная с 7 недель беременности. Она становится возможной благодаря появлению в шейной части спинного мозга плода двигательных нейронов [23]. Было выявлено, что они носят характер типа «вздрагивания», затем на фоне увеличения общих движений присоединяются икотоподобные движения, изолированные движения рук и ног, ретрофлексия и поворачивание головы. С 10-й недели у плода появляются первые дыхательные движения, а также зевание и открывание рта. Часть из этих типов двигательных актов исчезает в постнатальной жизни, другие же сохраняются и развиваются.

Известно, что к 10—12 неделям беременности общая двигательная активность у плодов занимает 17-18% общего времени, являясь за счет эфферентной импульсации мощным стимулом для развития их ЦНС [22]. Было показано, что до 20 недели происходит увеличение количества движений у плода, число которых в дальнейшем может уменьшаться. При этом нарастает продолжительность каждого движения. Афферентная импульсация в ЦНС от аппарата движения на ранних этапах онтогенеза является ведущим фактором структурно-функционального созревания мозга. Нарушения притока двигательной импульсации в развивающийся мозг в поздние сроки эмбриогенеза также вызывают изменения структурной дифференциации и функциональных свойств развивающихся нервных клеток, следствием чего является резкое нарушение развития адаптивных механизмов мозга. К двигательным депривациям наиболее чувствительны дифференцирующиеся нервные клетки в структурах мозга. Незрелые нейроны менее чувствительны к подобным ограничениям, но более чувствительны к афферентным двигательным нагрузкам [2].

Дыхательные движения у плодов, появляясь с ранних сроков беременности, характеризуются отдельными самопроизвольными актами с резким вдохом. Характер дыхательной активности изменяется с увеличением срока беременности — движения становятся более регулярными и снижается их частота. Ритмичный характер дыхательные движения приобретают к 24—26 неделям внутриутробного развития и к 34—35 неделям они, как правило, сочетаются с общей двигательной активностью, занимая 30—50 % времени исследования. Экспериментальные исследования различных авторов позволили выявить, что регуляция дыхательных движений у плодов осуществляется центральными механизмами — дыхательным центром продолговатого мозга, ядрами среднего мозга, ретикулярной формацией [4] и, в меньшей степени, хеморецепторами аорты и легких.

В эксперименте и клинике изучено влияние изменений функционального состояния ЦНС плода на его двигательную и дыхательную активность. Так, под влиянием гипоксии происходит угнетение двигательной активности. При этом возможно ее восстановление через несколько часов, если эпизод гипоксии продолжался короткое время. В противном случае присоединяется метаболический ацидоз, на фоне которого двигательная активность еще больше угнетается, вплоть до ее полного отсутствия [19]. Принцип постепенного угнетения различных видов активности у плода под влиянием гипоксии лег в основу комплексной оценки его функционального состояния путем регистрации так называемого «биофизического профиля плода». Считают, что более зрелые центры ЦНС плода более устойчивы к гипоксии, чем молодые. Следовательно, тот вид активности, который появляется первым в процессе онтогенеза, угнетается в последнюю очередь под влиянием гипоксии.

Помимо общей двигательной и дыхательной активности для оценки функционального состояния ЦНС плода в последние годы предложено использовать также изучение его окуломоторной системы. Было показано, что, наблюдая у плода движения зрачков, с 16 недель можно выявить медленные движения глазных яблок, а с 18—20 недель беременности — быстрые. При этом до 36 недель эти движения организованы в эпизоды, а в дальнейшем они циклически меняются, коррелируя с изменениями у плодов общей двигательной активности и сердечной деятельности. Отсутствие смены периодов подвижности и неподвижности глаз или стойкое изменение их продолжительности связывают с функциональными повреждениями ЦНС у плода, проявляющимися стойкими неврологическими нарушениями у новорожденных в виде умственной отсталости и ДЦП.

У развивающегося плода способность к интегративной деятельности его центральной нервной системы может быть оценена на основании анализа организации его функциональных состояний в цикл активность—покой. Было показано, что для плодов до 20-й недели беременности характерно недифференцированное состояние. На этом этапе развития для них характерны диффузные генерализованные реакции, которые не зависят от источника начального возбуждения и обусловлены синхронной активностью всех мотонейронов спинного мозга. Эти реакции проявляются в виде двигательных автоматизмов, децелераций и кратковременных дыхательных движений типа gasps [3]. По мере прогрессирования беременности недифференцированное состояние постепенно замещается промежуточным, на фоне которого с 21-й недели появляются эпизоды активного, а позднее — спокойного состояния ( с 23-й недели). Продолжительность промежуточного состояния, регистрируемого между активным и спокойным, с увеличением срока беременности постепенно уменьшается. Оно полностью исчезает у плода к 34 неделям [1]. По данным литературы можно сделать вывод о том, что при оценке функциональной зрелости ЦНС плода большое значение придается продолжительности переходных состояний — из спокойного к активному и наоборот. Увеличение продолжительности переходных состояний наблюдают при задержке развития плода. Процесс созревания переходных состояний у плода отражает общую зрелость циклической организации комплекса активность-покой. Таким образом, в процессе онтогенеза у плода на фоне созревания его ЦНС наблюдается формирование цикла активность- покой, который в постнатальном периоде преобразуется в истинный цикл бодрствование—сон.

В лаборатории физиологии и патофизиологии плода НИИ АГ им. Д. О. Отта РАМН на протяжении последних 15 лет проводилось изучение процессов формирования и созревания ЦНС плода, а также разработка методов диагностики их нарушений при различной акушерской и экстрагенитальной патологии у матери, сопровождающейся развитием плацентарной недостаточности. Наиболее изучены нами неблагоприятные последствия созревания коры мозга во II и III триместрах беременности, когда его масса быстро увеличивается за счет образования дендритов, синапсов и миелина, т. е. за счет созревания нейронов и развития интегративной функции ЦНС.

Исследования, проведенные на плодах-анэнцефалах, позволили выявить, что при анэнцефалии характер сердечной деятельности плода, двигательной активности и интеграции этих функций (моторно-кардиального рефлекса — нон-стресс-теста) определяется наличием у плода определенных структур мозга. Так, сердечный ритм — развитием продолговатого мозга, начальное становление моторно-кардиального рефлекса на базе двигательных автоматизмов — структурами среднего мозга. При этом циклической организации функциональных состояний у плодов-анэнцефалов на всем протяжении беременности не происходит. Кроме того, при анэнцефалии у плодов (вне зависимости от степени морфологического нарушения развития мозга) по сравнению с нормально развитыми плодами сопоставимого гестационного возраста значительно увеличивается в крови и в амниотической жидкости активность ВВ-креатинкиназы (рис. 1) [18].

 

Рис. 1. Содержание ВВ-креатинкиназы в амниотической жидкости и крови плодов в норме и при анэнцефалии во II триместре беременности

 

Дальнейшие наши ретроспективные сравнительные исследования, проведенные у плодов и новорожденных, страдающих гемолитической болезнью, и от матерей с сахарным диабетом I типа, выявили, что основными универсальными маркерами нарушений функции ЦНС плодов, значения которых коррелировали со степенью неврологических нарушений у них после рождения, являются следующие. Функциональные — снижение амплитуды моторно-кардиального рефлекса (нон-стресс-тест) и осцилляций сердечного ритма, увеличение продолжительности промежуточной и укорочение продолжительности спокойной фаз цикла активность-покой (рис. 2).

 

Рис. 2. Зависимость показаний цикла активность—покой у плодов основных групп в III триместре беременности от степени тяжести неврологических нарушений, выявляемых у них в ранний неонатальный период

 

Биохимические — повышение в крови у плодов активности ВВ-креатинкиназы (рис.3) и увеличение уровня нейроспецифической енолазы — маркера тяжелых функциональных нарушений их ЦНС (рис.4).

 

Рис. 3. Общая активность и содержание ВВ-изофермента креатинкиназы в крови плодов основных групп по отношению к контрольной в III триместре беременности

 

Рис. 4. Содержание нейроспецифической енолазы в амниотической жидкости и крови плодов в III триместре беременности в основных и контрольных группах

 

Оценка неврологического статуса новорожденных включала определение активного, пассивного, постурального тонуса и безусловных рефлексов по методу С. Amiel-Tison и S. A. Dergassies в модификации Б. А. Фоменко [9]. При этом стойко

сохраняющаяся диссоциированная задержка формирования тонических и рефлекторных реакций на 1-4 недели от гестационного возраста новорожденного являлась диагностическим критерием тяжелого нарушения его ЦНС. В последующем она сопровождалась задержкой психомоторного развития ребенка на первом году жизни. Выявляемая равномерная задержка становления тонических и рефлекторных реакций на 1—2 неделе, давала основание полагать, что при своевременном применении терапии под наблюдением невропатолога психомоторное развитие этих детей будет соответствовать возрастной норме к концу первого года жизни.

Максимальные изменения показателей сердечного ритма плода в сторону снижения амплитуд осцилляций и моторно-кардиального рефлекса, а также параметров цикла активность-покой в сторону укорочения спокойного состояния и удлинения продолжительности промежуточного состояния было обнаружено у тех плодов, которые в раннем неонатальном периоде имели диссоциированную задержку становления тонических и рефлекторных реакций. Эта же группа плодов имела максимальные уровни активности нейроспецифических креатинкиназы (в 2,9 раз превышающие таковые в крови здоровых плодов) и енолазы в пуповинной крови. Кроме того, нами было обнаружено, что в пуповинной крови плодов женщин, страдающих сахарным диабетом I типа, на протяжении беременности наблюдается достоверно более высокий уровень активности ВВ-креатинкиназы. Этот процесс характеризует повышение проницаемости мембран нейронов и отражает повреждение ЦНС плода на клеточном уровне.

Кроме того, был проанализирован характер дыхательной активности у обследованных групп плодов. Она была представлена тремя разновидностями дыхательных движений. У плодов, имевших при рождении диссоциированную задержку тонических и рефлекторных реакций, она характеризовалась либо ее полным отсутствием, либо преобладали более частые и регулярные движения по сравнению с нормой ( тип «в» на рис. 5). Изменения характера дыхательной активности у таких плодов могут быть обусловлены нарушениями структур среднего мозга и ретикулярной формации, играющей существенную роль в координации работы дыхательного центра продолговатого мозга.

 

Рис. 5. Графическое изображение различных типов дыхательных движений плодов

1 — тип «а» — не отличающиеся по частоте и регулярности от таковых при физиологическом течении беременности;

2 — тип «б» — более редкие и менее регулярные, чем в норме;

3 — тип «в» — более частые и регулярные, чем в норме

 

Нами были проведены исследования становления цикла активность—покой у плодов при многоплодной беременности. Было выявлено, что в 60 % случаев у плодов двоен Цикл активность—покой не формировался вплоть до окончания беременности. У остальных — наблюдалась задержка созревания цикла, не зависящая от типа плацентации, характеризовавшаяся меньшей продолжительностью спокойного и большей длительностью промежуточного его состояний. Функциональные нарушения развития ЦНС плодов двоен, проявляющиеся равномерной задержкой становления тонических и рефлекторных реакций в раннем неонатальном периоде, сочетались у них с отсутствием циклической смены функциональных состояний.

Допплерометрические исследования кровотока в магистральных артериях функциональной системы мать-плацента-плод, проведенные при беременности, сочетающейся с сахарным диабетом I типа, и при многоплодии, позволили выявить адаптивные и патологические гемодинамические реакции мозгового кровотока, выявляемые на фоне рано развивающейся плацентарной недостаточности. Так, у плодов женщин, страдающих сахарным диабетом I типа, по сравнению с плодами при физиологической беременности наблюдалось более раннее появление диастолического кровотока (с 10-й недели беременности) и более низкие значения пульсационного индекса (в 10-12 недель) в средней мозговой артерии. При этом при декомпенсированном течении заболевания величина сосудистого сопротивления в этом сосуде была почти в 2 раза меньше по сравнению с компенсированным течением. Подобные реакции мы рассматриваем как адаптивные, направленные на обеспечение кровоснабжения головного мозга на фоне рано развивающейся плацентарной недостаточности. В 19—20 недель у плодов при сахарном диабете, напротив, наблюдалось более высокое сосудистое сопротивление в средней мозговой артерии по сравнению с плодами при физиологической беременности. Эти данные свидетельствуют о прогрессировании плацентарной недостаточности. Наибольшее предсказательное значение для раннего выявления возможного развития функциональных неврологических нарушений у плода и новорожденного имел выявление повышенной сосудистой резистентности в артерии пуповины в 23—24 недели беременности.

При многоплодии равномерная задержка становления тонических и рефлекторных реакции наблюдалась у тех новорожденных, у которых в антенатальный период наблюдалась повышенная сосудистая резистентность в артерии пуповины в 28—32 недели. Она чаще формировалась при диссоциированном развитии плодов. Кроме того, гипотрофия плодов двоен II и III степени всегда сопровождалась отсутствием формирования цикла активность—покой и сочеталась с равномерной задержкой формирования тонических и рефлекторных реакций [6].

В последние годы нами были проведены исследования по изучению развития мозга на ранних этапах эмбриогенеза. Совместно с сотрудниками отдела морфологии Института экспериментальной медицины РАМН были изучены процессы пролиферации, миграции, дифференцировки, апоптоза в развивающемся головном мозге плодов при физиологической беременности и сахарном диабете I типа у 6-13 недельных эмбрионов человека. Сравнительное исследование пролиферативных процессов в закладке неокортекса с помощью иммуноцитохимических исследований распределения PCNA (ядерного антигена пролиферирующих клеток) при физиологической беременности и при сахарном диабете I типа показали отсутствие различий в распределении PCNA-позитивных клеток. Этот факт свидетельствует об отсутствии нарушений пролиферации нейроэпителиальных клеток в закладке неокортекса эмбрионов при сахарном диабете I типа.

Для изучения процессов апоптоза в ткани развивающегося мозга эмбрионов была использована иммуноцитохимическая реакция на белок bcl-2. Наиболее выраженная реакция на этот белок при физиологической беременности была выявлена в эпителии крыши IV желудочка и эпителии сосудистого сплетения ромбовидного мозга. Этот феномен может объясняться особым значением каждой из клеток однослойной крыши IV желудочка в обеспечении эмбрионального гематоликворного барьера. Выявленая как при физиологической беременности, так и при сахарном диабете I типа неравномерность распределения bcl-2-экс- прессирующих клеток в развивающемся мозге, свидетельствует о неодинаковой устойчивости различных отделов мозга к апоптозу. Высокий уровень экспрессии этого белка в тех или иных отделах развивающегося мозга (например, радиальной глии) свидетельствует об их повышенной устойчивости к процессам клеточной гибели и приоритетном значении в обеспечении нормального нейрогистогенеза [5]. Таким образом, грубых нарушений тканевой организации и нейрогистогенеза головного мозга эмбриона, развивающегося при сахарном диабете I типа, нами обнаружено не было. Однако у плодов при декомпенсированном длительно текущем диабете I типа наблюдалось отставание размеров эмбриона и его головного мозга от гестационного возраста, сопровождавшееся выявляемой при электронной микроскопии отечностью ворсин хориона и их недостаточной васкуляризацией. Эти процессы характеризуют раннее развитие плацентарной недостаточности.

Достигнутые в последние годы перинатологами успехи в изучении патогенеза и диагностике неврологических нарушений плода сделали очевидным тот факт, что нарушения развития центральной нервной системы следует диагностировать как можно раньше, а перинатальная неврология как наука должна носить профилактический характер. Усилия акушеров в первую очередь должны быть направлены на лечение и профилактику акушерских и экстрагенитальных заболеваний у беременной, которые являются причиной развития первичной и вторичной плацентарной недостаточности. Как известно, она сопровождается хронической гипоксией плода, на фоне которой нарушается развитие центральной нервной системы. Приоритетным направлением следует считать разработку и поиск новых методов ранней диагностики перинатальных неврологических нарушений, а также новых лекарственных средств, обладающих нейропротективными свойствами.

Проблема профилактики функциональных нарушений развития ЦНС у новорожденных в последние годы приобрела особое значение. Это связано во многом с успехами современных репродуктивных технологий, которые расширили возможности для наступления беременности и ее последующего вынашивания у женщин, входящих в группу высокого риска по развитию перинатальной патологии, в том числе неврологической, у плода. Рождение же детей с тяжелыми нарушениями координационной и интеграционной функции ЦНС, а также с минимальными мозговыми дисфункциями является серьезной медико-социальной проблемой для общества. Это определяет необходимость поиска путей ее решения.

×

About the authors

N. G. Pavlova

Research Institute of Obstetrics and Gynecology named after D.O. Otta RAMS

Author for correspondence.
Email: info@eco-vector.com
Russian Federation, St. Petersburg

N. N. Konstantinova

Research Institute of Obstetrics and Gynecology named after D.O. Otta RAMS

Email: info@eco-vector.com
Russian Federation, St. Petersburg

References

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Содержание ВВ-креатинкиназы в амниотической жидкости и крови плодов в норме и при анэнцефалии во II триместре беременности

Download (17KB)
3. Fig. 2. Dependence of the indications of the activity-rest cycle in fetuses of the main groups in the third trimester of pregnancy on the severity of neurological disorders detected in them in the early neonatal period

Download (45KB)
4. Fig. 3. Total activity and content of BB isoenzyme of creatine kinase in the blood of fetuses of the main groups in relation to the control in the third trimester of pregnancy

Download (19KB)
5. Fig. 4. The content of neurospecific enolase in the amniotic fluid and blood of fetuses in the third trimester of pregnancy in the main and control groups

Download (13KB)
6. Fig. 5. Graphical representation of different types of fetal respiratory movements

Download (9KB)

Copyright (c) 2003 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies