Anatomical and pathophysiological features of fetal circulation in the umbilical-portal venous system

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Being facilitated in recent years by the advent of high-resolution gray-scale, color Doppler and three-dimensional ultrasound, prenatal visualization of venous vessels has improved much and well contributed to a better understanding of the value of fetal venous circulation. The fetal liver plays an important role in ensuring normal fetal blood circulation, receiving up to 70–80% of venous return from the placenta. Of particular importance is its role in the regulation of intrauterine growth. Venous inflow to the fetal liver is significantly influenced by maternal factors. Ultrasound evaluation of the fetal venous system remains to be not an easy task. This article discusses the significance and features of the anatomical and functional development of the fetal intrahepatic venous system.

Full Text

Restricted Access

About the authors

Elizaveta V. Shelayeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555
ResearcherId: K-2755-2018

MD, Cand. Sci. (Med.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Elizaveta M. Tsybuk

St. Petersburg State University

Email: elizavetatcybuk@gmail.com
ORCID iD: 0000-0001-5803-1668
SPIN-code: 3466-7910
ResearcherId: ABB-6930-2020

student, The Department of Obstetrics, Gynecology, and Reproductive Sciences, Medical Faculty

Russian Federation, Saint Petersburg

Ekaterina V. Kopteyeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407

MD, Junior Researcher, The Department of obstetrics and perinatology

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Roman V. Kapustin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; St. Petersburg State University

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260
ResearcherId: G-3759-2015

MD, Dr. Sci. (Med.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034; Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; St. Petersburg State University

Author for correspondence.
Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
Scopus Author ID: 56895765600
ResearcherId: P-4357-2017

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034; Saint Petersburg

References

  1. Kiserud T. The ductus venosus. Semin Perinatol. 2001;25(1):11−20. doi: 10.1053/sper.2001.22896
  2. Huisman TW, Stewart PA, Wladimiroff JW. Ductus venosus blood flow velocity waveforms in the human fetus — A doppler study. Ultrasound Med Biol. 1992;18(1):33−37. doi: 10.1016/0301-5629(92)90005-u
  3. Ailamazyan EK, Konstantinova NN, Polyanin AA, Kogan IYu. Modern representation about venous circulation in fetoplacental system. Journal of obstetrics and women’s diseases. 1999;48(3):10−14. (In Russ.). doi: 10.17816/JOWD88700
  4. Polyanin AA, Kogan IYu. Venoznoye krovoobrashcheniye ploda pri normal’no protekayushchey i oslozhnennoy beremennosti. Saint Petersburg: Petrovskiy fond; 2002. (In Russ.)
  5. Finnemore A, Groves A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015;20(4):210−216. doi: 10.1016/j.siny.2015.04.003
  6. Morton SU, Brodsky D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016;43(3):395−407. doi: 10.1016/j.clp.2016.04.001
  7. Gayvoronskiy IV. Normal’naya anatomiya cheloveka. Vol. 2. Saint Petersburg: SpetsLit; 2020. (In Russ.)
  8. Meler E, Martínez J, Boada D, et al. Doppler studies of placental function. Placenta. 2021;108:91−96. doi: 10.1016/j.placenta.2021.03.014
  9. Polyanin AA, Kogan IYu. Plodovo-platsentarnoe venoznoe krovoobrashchenie. Regional blood circulation and microcirculation. 2003;2(2):5−9. (In Russ.)
  10. Murphy PJ. The fetal circulation. Continuing Education in Anaesthesia Critical Care & Pain. 2005;5(4):107–112. doi: 10.1093/BJACEACCP/MKI030
  11. Yagel S, Cohen SM, Valsky DV, et al. Systematic examination of the fetal abdominal precordial veins: a cohort study. Ultrasound Obstet Gynecol. 2015;45(5):578−583. doi: 10.1002/uog.13444
  12. Ahmed B, Abushama M, Khraisheh M, Dudenhausen J. Role of ultrasound in the management of diabetes in pregnancy. J Matern Fetal Neonatal Med. 2015;28(15):1856−1863. doi: 10.3109/14767058.2014.971745
  13. Kivilevitch Z, Gindes L, Deutsch H, Achiron R. In-utero evaluation of the fetal umbilical-portal venous system: two- and three-dimensional ultrasonic study. Ultrasound Obstet Gynecol. 2009;34(6):634−642. doi: 10.1002/uog.7459
  14. Yagel S, Kivilevitch Z, Cohen SM, et al. The fetal venous system, part I: normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation. Ultrasound Obstet Gynecol. 2010;35(6):741−750. doi: 10.1002/uog.7618
  15. Mavrides E, Moscoso G, Carvalho JS, et al. The anatomy of the umbilical, portal and hepatic venous systems in the human fetus at 14-19 weeks of gestation. Ultrasound Obstet Gynecol. 2001;18(6):598−604. doi: 10.1046/j.0960-7692.2001.00581.x
  16. Chaoui R, Heling KS, Karl K. Ultrasound of the fetal veins part 1: the intrahepatic venous system. Ultraschall Med. 2014;35(3):208−228. doi: 10.1055/s-0034-1366316
  17. Mavrides E, Moscoso G, Carvalho JS, et al. The human ductus venosus between 13 and 17 weeks of gestation: histological and morphometric studies. Ultrasound Obstet Gynecol. 2002;19(1):39−46. doi: 10.1046/j.1469-0705.2002.00614.x
  18. Ailamazyan EK, Kirillova OV, Polyanin AA, Kogan IYu. Functional morphology of ductus venosus in human fetus. Neuro Endocrinol Lett. 2003;24(1−2):28−32.
  19. Kogan IYu. Znachenie doplerometricheskogo issledovaniya venoznoy tsirkulyatsii ploda dlya otsenki ego funktsional’nogo sostoyaniya. Journal of obstetrics and women’s diseases. 2014;63(1):54. (In Russ.). doi: 10.17816/JOWD63154
  20. Kessler J, Rasmussen S, Kiserud T. The fetal portal vein: normal blood flow development during the second half of human pregnancy. Ultrasound Obstet Gynecol. 2007;30(1):52−60. doi: 10.1002/uog.4054
  21. Kessler J, Rasmussen S, Godfrey K, et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res. 2008;63(3):315−320. doi: 10.1203/pdr.0b013e318163a1de
  22. Karmegaraj B. Normal fetal umbilical, portal, and hepatic venous system: four-dimensional stic rendering. Radiology. 2021;299(1):51. doi: 10.1148/radiol.2021203300
  23. Kilavuz O, Vetter K. Is the liver of the fetus the 4th preferential organ for arterial blood supply besides brain, heart, and adrenal glands? J Perinat Med. 1999;27(2):103−106. doi: 10.1515/JPM.1999.012
  24. Ebbing C, Rasmussen S, Godfrey KM, et al. Redistribution pattern of fetal liver circulation in intrauterine growth restriction. Acta Obstet Gynecol Scand. 2009;88(10):1118−1123. doi: 10.1080/00016340903214924
  25. Ebbing C, Rasmussen S, Godfrey KM, et al. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod Sci. 2008;15(2):166−178. doi: 10.1177/1933719107310307
  26. Kessler J, Rasmussen S, Godfrey K, et al. Fetal growth restriction is associated with prioritization of umbilical blood flow to the left hepatic lobe at the expense of the right lobe. Pediatr Res. 2009;66(1):113−117. doi: 10.1203/PDR.0b013e3181a29077
  27. Achiron R, Kivilevitch Z. Fetal umbilical-portal-systemic venous shunt: in-utero classification and clinical significance. Ultrasound Obstet Gynecol. 2016;47(6):739−747. doi: 10.1002/uog.14906
  28. Kivilevitch Z, Kassif E, Gilboa Y, et al. The intra-hepatic umbilical-Porto-systemic venous shunt and fetal growth. Prenat Diagn. 2021;41(4):457−464. doi: 10.1002/pd.5882
  29. Seravalli V, Miller JL, Block-Abraham D, Baschat AA. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach. Acta Obstetricia et Gynecologica Scandinavica. 2016;95(6);635–644. doi: 10.1111/AOGS.12893
  30. Su EJ, Galan HL. Fetal growth and growth restriction. In: Pandya PP, Oepkes D, Sebire NJ, Wapner RJ. editors. Fetal Medicine. 3rd ed. London: Elsevier; 2020. P. 469−483.e4. DOI: 0.1016/B978-0-7020-6956-7.00039-7. [cited 2022 Feb. 14]. Available from: https://www.sciencedirect.com/science/article/pii/B9780702069567000397
  31. Medvedev MV. Prenatal echography. Differential diagnosis and prognosis. Moscow: Real Time; 2016. (In Russ.)
  32. Minnella GP, Crupano FM, Syngelaki A, et al. Diagnosis of major heart defects by routine first-trimester ultrasound examination: association with increased nuchal translucency, tricuspid regurgitation and abnormal flow in ductus venosus. Ultrasound Obstet Gynecol. 2020;55(5):637−644. doi: 10.1002/uog.21956
  33. Ferrazzi E, Lees C, Acharya G. The controversial role of the ductus venosus in hypoxic human fetuses. Acta Obstetricia et Gynecologica Scandinavica. 2019;98(7):823–829. doi: 10.1111/AOGS.13572
  34. Caradeux J, Martinez-Portilla RJ, Basuki TR, et al. Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(2S):S774−S782.e21. doi: 10.1016/j.ajog.2017.11.566
  35. Hecher K, Bilardo CM, Stigter RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol. 2001;18(6):564−570. doi: 10.1046/j.0960-7692.2001.00590.x
  36. Morris RK, Selman TJ, Verma M, et al. Systematic review and meta-analysis of the test accuracy of ductus venosus Doppler to predict compromise of fetal/neonatal wellbeing in high risk pregnancies with placental insufficiency. Eur J Obstet Gynecol Reprod Biol. 2010;152(1):3−12. doi: 10.1016/j.ejogrb.2010.04.017
  37. Kessler J, Rasmussen S, Godfrey K, et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses. Am J Obstet Gynecol. 2011;204(5):429.e1−429.e4297. doi: 10.1016/j.ajog.2010.12.038
  38. Kilavuz O, Vetter K, Kiserud T, Vetter P. The left portal vein is the watershed of the fetal venous system. J Perinat Med. 2003;31(2):184−187. doi: 10.1515/JPM.2003.025
  39. Kessler J, Rasmussen S, Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol. 2007;30(5):757−764. doi: 10.1002/uog.5146
  40. Ebbing C, Rasmussen S, Kiserud T. Fetal hemodynamic development in macrosomic growth. Ultrasound in Obstetrics & Gynecology. 2011;38(3):303–308. doi: 10.1002/UOG.9046
  41. Tchirikov M, Kertschanska S, Schröder HJ. Obstruction of ductus venosus stimulates cell proliferation in organs of fetal sheep. Placenta. 2001;22(1):24−31. doi: 10.1053/plac.2000.0585
  42. Rees WD. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring. Proc Nutr Soc. 2019;78(1):88−96. doi: 10.1017/S0029665118002537
  43. Ikenoue S, Waffarn F, Ohashi M, et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity. Am J Obstet Gynecol. 2017;217(2):204.e1−204.e8. doi: 10.1016/j.ajog.2017.04.022
  44. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Obstetrics. Obesity in pregnancy: ACOG practice bulletin, number 230. Obstet Gynecol. 2021;137(6):e128−e144. doi: 10.1097/AOG.0000000000004395
  45. Kuzawa CW. Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? Am J Hum Biol. 2005;17(1):5−21. doi: 10.1002/ajhb.20091
  46. Cosmo YC, Araujo Júnior E, de Sá RA, et al. Doppler velocimetry of ductus venous in preterm fetuses with brain sparing effect: neonatal outcome. J Prenat Med. 2012;6(3):40−46.
  47. Haugen G, Hanson M, Kiserud T, et al. Fetal liver-sparing cardiovascular adaptations linked to mother’s slimness and diet. Circ Res. 2005;96(1):12−14. doi: 10.1161/01.RES.0000152391.45273.A2
  48. Godfrey KM, Haugen G, Kiserud T, et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One. 2012;7(8):e41759. doi: 10.1371/journal.pone.0041759
  49. Tchirikov M, Kertschanska S, Stürenberg HJ, Schröder HJ. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta. 2002;23 Suppl A:S153−S158. doi: 10.1053/plac.2002.0810
  50. Vedmedovska N, Rezeberga D, Teibe U, et al. Adaptive changes in the splenic artery and left portal vein in fetal growth restriction. J Ultrasound Med. 2012;31(2):223−229. doi: 10.7863/jum.2012.31.2.223
  51. Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1 Pt 1):147−153. doi: 10.1016/s0002-9378(00)70504-7
  52. Baschat AA. Venous Doppler evaluation of the growth-restricted fetus. Clin Perinatol. 2011;38(1):103−vi. doi: 10.1016/j.clp.2010.12.001
  53. Bellotti M, Pennati G, De Gasperi C, et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347−1358. doi: 10.1016/j.ajog.2003.11.018
  54. Kiserud T, Kessler J, Ebbing C, Rasmussen S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol. 2006;28(2):143−149. doi: 10.1002/uog.2784
  55. Baschat AA, Gembruch U, Reiss I, et al. Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol. 2000;16(5):407−413. doi: 10.1046/j.1469-0705.2000.00284.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of fetal umbilical-portal venous system: UV — umbilical vein; LPV — left portal vein; DV — ductus venosus; RPV — right portal vein; MPV — main portal vein; aRPV — anterior branch of the right portal vein; pRPV — posterior branch of the right portal vein; IVC — inferior vena cava; А — aorta; G — gallbladder

Download (136KB)
3. Fig. 2. 3D reconstruction in Glass Body rendering mode by GE Healthcare Voluson E10 (USA). The gestational age is 31 weeks and 3 days. The fetal umbilical-portal venous system. UV — umbilical vein; LPV — left portal vein; DV — ductus venosus; RPV — right portal vein; MPV — main portal vein; aRPV — anterior branch of the right portal vein; pRPV — posterior branch of the right portal vein; 1 — medial branch of the left portal vein; 2 — inferior branch of the left portal vein; 3 — superior branch of the left portal vein

Download (174KB)
4. Fig. 3. 3D reconstruction of variants of the umbilical-portal anastomosis in HD Glass Body rendering mode by GE Healthcare Voluson E10 (USA): а — Т-shaped anastomosis; b — Х-shaped anastomosis; c — Н-shaped anastomosis. LPV — left portal vein; MPV — main portal vein; aRPV — anterior branch of the right portal vein; pRPV — posterior branch of the right portal vein. The gestational age is 30 0/7 to 33 6/7 weeks

Download (206KB)

Copyright (c) 2022 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies