Управление режимом работы энергосистемы с распределенной системой аккумулирования электрической энергии

Мұқаба
  • Авторлар: 1, 1
  • Мекемелер:
    1. Самарский государственный технический университет
  • Шығарылым: Том 1 (2022)
  • Беттер: 446-447
  • Бөлім: Электроэнергетика
  • URL: https://journals.eco-vector.com/osnk-sr/article/view/107851
  • ID: 107851

Дәйексөз келтіру

Толық мәтін

Аннотация

Обоснование. Современные электроэнергетические системы имеют в своем составе различные источники электрической энергии, в том числе и источники распределенной генерации различной мощности, и возобновляемые источники (ВИЭ) в частности. Основной недостаток ВИЭ — нестабильность производства электроэнергии в зависимости от внешних факторов. Одним из возможных путей решения данной задачи является применение систем аккумулирования электрической энергии. Однако подобные системы могут применяться также для сглаживания суммарных графиков электрических нагрузок группы потребителей. При этом следует отметить, что возможно реализовать распределенную систему аккумулирования, которая будет обладать большей гибкостью, чем централизованная.

Цель — исследование режимов работы энергосистемы с распределенной аккумуляцией электрической энергии, на примере участка энергосистемы о. Сахалин.

Методы. В качестве района исследования был выбран центральный энергорайон о. Сахалин, а именно участок электрической сети от ПС 220/110/35/6,3 Ноглики до ПС 35/6,3 Вал. В качестве основных потребителей здесь выступают нефте- и газодобывающие предприятия. Единственный бытовой потребитель получает питание от одноименной подстанции Вал. Исходные данные по параметрам оборудования для моделирования электрической сети были взяты из приложения [1]. Моделирование графиков электрических нагрузок отдельных потребителей производилось с использованием типовых графиков нагрузок. На рис. 1 приведены графики нагрузок по активной мощности всех рассматриваемых потребителей (а) и суммарные графики электрических нагрузок по активной и реактивной мощностям на ПС Ногликская для 24 часов (б). Все расчеты режимов работы сети производились с использованием ПО RastrWin3.

 

Рис. 1. Графики нагрузок: а — график полной потребляемой нагрузки по P и Q; б — график потребляемой активной нагрузки на каждом участке

 

Из представленных на рис. 1, а данных следует, что самое большое потребление по активной мощности происходит на ПС Монги, суммарная нагрузка которой составляет ~5 МВт в максимальном режиме, а минимальная нагрузка наблюдается на ПС Вал. При этом максимум потребления приходится на 22 часа и составляет 10290 МВт и 4417 МВАр, что представлено на рис. 1, б. В ходе работы также был произведен анализ уровня напряжений в сети 35 кВ (рис. 2) для максимального и минимального режима. Наибольшее отклонение напряжения от номинального уровня наблюдается на ПС Вал и составляет до 11 %.

 

Рис. 2. Уровень напряжения в узлах сети 35 кВ

 

Для оптимизации режимов работы сети был рассмотрен вариант внедрения системы аккумулирования. Для определения оптимальных узлов для ее установки моделировалась установка системы в каждый узел поочередно, затем изменялась, выдаваемая системой мощность, и определялись потери активной и реактивной мощности.

Результаты. Результаты расчетов приведены на рис. 3. Из полученных результатов следует, что целесообразно установить данные системы на ПС Мирзоево и ПС Вал, при этом уровни напряжения во всей сети будут находиться в пределах допустимого отклонения.

 

Рис. 3. Графики потерь активной (а) и реактивной (б) мощности в сети в зависимости от мощности, выдаваемой системой аккумулирования

 

Выводы. В результате расчетов RastrWin3 была смоделирована электрическая сеть, произведен расчет ее режимов работы для 24 ч до внедрения системы аккумулирования, показано значительное отклонение уровня напряжения на ПС Вал. Далее определены места установки для распределенной системы аккумулирования, показано уменьшение потерь активной и реактивной мощности в сети при ее наличии.

Толық мәтін

Обоснование. Современные электроэнергетические системы имеют в своем составе различные источники электрической энергии, в том числе и источники распределенной генерации различной мощности, и возобновляемые источники (ВИЭ) в частности. Основной недостаток ВИЭ — нестабильность производства электроэнергии в зависимости от внешних факторов. Одним из возможных путей решения данной задачи является применение систем аккумулирования электрической энергии. Однако подобные системы могут применяться также для сглаживания суммарных графиков электрических нагрузок группы потребителей. При этом следует отметить, что возможно реализовать распределенную систему аккумулирования, которая будет обладать большей гибкостью, чем централизованная.

Цель — исследование режимов работы энергосистемы с распределенной аккумуляцией электрической энергии, на примере участка энергосистемы о. Сахалин.

Методы. В качестве района исследования был выбран центральный энергорайон о. Сахалин, а именно участок электрической сети от ПС 220/110/35/6,3 Ноглики до ПС 35/6,3 Вал. В качестве основных потребителей здесь выступают нефте- и газодобывающие предприятия. Единственный бытовой потребитель получает питание от одноименной подстанции Вал. Исходные данные по параметрам оборудования для моделирования электрической сети были взяты из приложения [1]. Моделирование графиков электрических нагрузок отдельных потребителей производилось с использованием типовых графиков нагрузок. На рис. 1 приведены графики нагрузок по активной мощности всех рассматриваемых потребителей (а) и суммарные графики электрических нагрузок по активной и реактивной мощностям на ПС Ногликская для 24 часов (б). Все расчеты режимов работы сети производились с использованием ПО RastrWin3.

 

Рис. 1. Графики нагрузок: а — график полной потребляемой нагрузки по P и Q; б — график потребляемой активной нагрузки на каждом участке

 

Из представленных на рис. 1, а данных следует, что самое большое потребление по активной мощности происходит на ПС Монги, суммарная нагрузка которой составляет ~5 МВт в максимальном режиме, а минимальная нагрузка наблюдается на ПС Вал. При этом максимум потребления приходится на 22 часа и составляет 10290 МВт и 4417 МВАр, что представлено на рис. 1, б. В ходе работы также был произведен анализ уровня напряжений в сети 35 кВ (рис. 2) для максимального и минимального режима. Наибольшее отклонение напряжения от номинального уровня наблюдается на ПС Вал и составляет до 11 %.

 

Рис. 2. Уровень напряжения в узлах сети 35 кВ

 

Для оптимизации режимов работы сети был рассмотрен вариант внедрения системы аккумулирования. Для определения оптимальных узлов для ее установки моделировалась установка системы в каждый узел поочередно, затем изменялась, выдаваемая системой мощность, и определялись потери активной и реактивной мощности.

Результаты. Результаты расчетов приведены на рис. 3. Из полученных результатов следует, что целесообразно установить данные системы на ПС Мирзоево и ПС Вал, при этом уровни напряжения во всей сети будут находиться в пределах допустимого отклонения.

 

Рис. 3. Графики потерь активной (а) и реактивной (б) мощности в сети в зависимости от мощности, выдаваемой системой аккумулирования

 

Выводы. В результате расчетов RastrWin3 была смоделирована электрическая сеть, произведен расчет ее режимов работы для 24 ч до внедрения системы аккумулирования, показано значительное отклонение уровня напряжения на ПС Вал. Далее определены места установки для распределенной системы аккумулирования, показано уменьшение потерь активной и реактивной мощности в сети при ее наличии.

×

Авторлар туралы

Самарский государственный технический университет

Email: sk.chehov@yahoo.com

студент, группа 112М, электротехнический факультет

Ресей, Самара

Самарский государственный технический университет

Хат алмасуға жауапты Автор.
Email: yaroslav.m.v@yandex.ru

научный руководитель, старший преподаватель кафедры «Электрические станции»

Ресей, Самара

Әдебиет тізімі

  1. Схема и программа развития электроэнергетики Сахалинской области на 2021–2025 гг. ООО. «Проектбалтэнерго», Москва. 2021.
  2. Герасименоко А.А. Федин В.Т. Передача и распределение электрической энергии. 2-е изд. Ростов: Феникс, 2008. 715 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Миникаев Р.И., Макаров Я.В., 2022

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>