Экспериментальное определение аэродинамических характеристик модели компоновки фюзеляжа с внешним контейнером

Capa
  • Autores: 1, 1, 1
  • Afiliações:
    1. Самарский национальный исследовательский университет имени С.П. Королева
  • Edição: Volume 1 (2023)
  • Páginas: 333-334
  • Seção: Теоретическая и прикладная механика
  • URL: https://journals.eco-vector.com/osnk-sr2023/article/view/421806
  • ID: 421806

Citar

Texto integral

Resumo

Обоснование. В качестве самолета-прототипа выбран ВМ-Т «Атлант». Его проектировали для транспортировки на космодром Байконур топлива и агрегатов ракетно-космических комплексов. Позже была выпущена модификация самолета Ан-224 «Мрия», созданная для таких же целей, как и ВМ-Т «Атлант». На сегодняшний день актуальными являются перевозки самолетами крупных грузов на внешней подвеске. Представляет интерес исследование влияния диаметра и высоты контейнера на интерференцию в компоновке.

Цель — экспериментально выявить закономерность изменения интерференции в зависимости от диаметра топливного бака и высоты расположения относительно фюзеляжа.

Методы. Для определения аэродинамических характеристик исследуемой системы тел использовался экспериментальный тензометрический метод измерения сил, действующих на модель.

Для эксперимента разработаны модели трех контейнеров и четырех пилонов с изменяющимися параметрами. Исследуемая модель выполнена на токарном станке, для этого реализована 3D модель в программе «Компас 3D», пример сборки представлен на рис. 1. Все опыты проведены в аэродинамической трубе Т-3 Самарского университета [1, 2]. Эксперименты проводились для изолированного фюзеляжа и контейнеров всех диаметров, а также для всех вариантов сборки. Диапазон углов атаки был следующим: от –6° до 6° с шагом 1°.

 

Рис. 1. Пример сборки исследуемой модели

 

Результаты. После обработки экспериментальных данных получены зависимости коэффициента подъемной силы и коэффициента лобового сопротивления от угла атаки для сборок с изменяющимися геометрическими параметрами.

На основании полученных графиков найдены производные коэффициента подъемной силы по углу атаки для всех исследуемых сборок. Коэффициент интерференции K найден по следующей формуле:

K=Cуа  комαCуа  фαSм.фCуа  контαSконт,

где  Cуа  комα,Cуа  фα,Cуа  контα— производные коэффициента подъемной силы по углу атаки для компоновки, изолированного фюзеляжа и изолированного контейнера соответственно;

Sм.ф — площадь миделевого сечения фюзеляжа;
Sконт — площадь поперечного сечения контейнера.

Результаты приведены на рис. 2 и 3, на которых введены обозначения:

d΄ — отношение диаметра контейнера к диаметру фюзеляжа; h΄ — отношение высоты пилона к диаметру фюзеляжа.

На основании полученных графиков найдены производные коэффициента подъёмной силы по углу атаки для всех исследуемых сборок.

 

Рис. 2. Зависимость коэффициента интерференции от отношения диаметра контейнера к диаметру фюзеляжа

 

Рис. 3. Зависимость коэффициента интерференции от отношения высоты пилона к диаметру фюзеляжа

 

Выводы. В результате исследования выявлено, что наилучшими относительными геометрическими характеристиками являются соотношение высоты контейнера над фюзеляжем к диаметру фюзеляжа h΄ = 0,571 и отношение диаметра контейнера к диаметру фюзеляжа d΄ = 0,857, что позволяет получить максимальное значение производной коэффициента подъемной силы по углу атаки при примерно одинаковом значении коэффициента лобового сопротивления.

Texto integral

Обоснование. В качестве самолета-прототипа выбран ВМ-Т «Атлант». Его проектировали для транспортировки на космодром Байконур топлива и агрегатов ракетно-космических комплексов. Позже была выпущена модификация самолета Ан-224 «Мрия», созданная для таких же целей, как и ВМ-Т «Атлант». На сегодняшний день актуальными являются перевозки самолетами крупных грузов на внешней подвеске. Представляет интерес исследование влияния диаметра и высоты контейнера на интерференцию в компоновке.

Цель — экспериментально выявить закономерность изменения интерференции в зависимости от диаметра топливного бака и высоты расположения относительно фюзеляжа.

Методы. Для определения аэродинамических характеристик исследуемой системы тел использовался экспериментальный тензометрический метод измерения сил, действующих на модель.

Для эксперимента разработаны модели трех контейнеров и четырех пилонов с изменяющимися параметрами. Исследуемая модель выполнена на токарном станке, для этого реализована 3D модель в программе «Компас 3D», пример сборки представлен на рис. 1. Все опыты проведены в аэродинамической трубе Т-3 Самарского университета [1, 2]. Эксперименты проводились для изолированного фюзеляжа и контейнеров всех диаметров, а также для всех вариантов сборки. Диапазон углов атаки был следующим: от –6° до 6° с шагом 1°.

 

Рис. 1. Пример сборки исследуемой модели

 

Результаты. После обработки экспериментальных данных получены зависимости коэффициента подъемной силы и коэффициента лобового сопротивления от угла атаки для сборок с изменяющимися геометрическими параметрами.

На основании полученных графиков найдены производные коэффициента подъемной силы по углу атаки для всех исследуемых сборок. Коэффициент интерференции K найден по следующей формуле:

K=Cуа  комαCуа  фαSм.фCуа  контαSконт,

где  Cуа  комα,Cуа  фα,Cуа  контα— производные коэффициента подъемной силы по углу атаки для компоновки, изолированного фюзеляжа и изолированного контейнера соответственно;

Sм.ф — площадь миделевого сечения фюзеляжа;
Sконт — площадь поперечного сечения контейнера.

Результаты приведены на рис. 2 и 3, на которых введены обозначения:

d΄ — отношение диаметра контейнера к диаметру фюзеляжа; h΄ — отношение высоты пилона к диаметру фюзеляжа.

На основании полученных графиков найдены производные коэффициента подъёмной силы по углу атаки для всех исследуемых сборок.

 

Рис. 2. Зависимость коэффициента интерференции от отношения диаметра контейнера к диаметру фюзеляжа

 

Рис. 3. Зависимость коэффициента интерференции от отношения высоты пилона к диаметру фюзеляжа

 

Выводы. В результате исследования выявлено, что наилучшими относительными геометрическими характеристиками являются соотношение высоты контейнера над фюзеляжем к диаметру фюзеляжа h΄ = 0,571 и отношение диаметра контейнера к диаметру фюзеляжа d΄ = 0,857, что позволяет получить максимальное значение производной коэффициента подъемной силы по углу атаки при примерно одинаковом значении коэффициента лобового сопротивления.

×

Sobre autores

Самарский национальный исследовательский университет имени С.П. Королева

Autor responsável pela correspondência
Email: ruslana.2002@yandex.ru

студентка, группа 1301-240507D, институт авиационной и ракетнокосмической техники

Rússia, Самара

Самарский национальный исследовательский университет имени С.П. Королева

Email: alex_ats74@mail.ru

студент, группа 1301-240507D, институт авиационной и ракетнокосмической техники

Rússia, Самара

Самарский национальный исследовательский университет имени С.П. Королева

Email: frolov_va@ssau.ru

научный руководитель, доцент кафедры конструкции и проектирования летательных аппаратов

Rússia, Самара

Bibliografia

  1. Комаров В.А., Тарасов В.В. Вузовская учебно-исследовательская аэродинамическая труба // Общероссийский научно-технический журнал «Полет». 2006. № 10. С. 23–40.
  2. Назаров Д.В., Никитин А.Н., Тарасова Е.В. Экспериментальная аэродинамика. Самара: Изд-во Самарского университета, 2020. 176 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Рис. 1. Пример сборки исследуемой модели

Baixar (44KB)
3. Рис. 2. Зависимость коэффициента интерференции от отношения диаметра контейнера к диаметру фюзеляжа

Baixar (4KB)
4. Рис. 3. Зависимость коэффициента интерференции от отношения высоты пилона к диаметру фюзеляжа

Baixar (4KB)

Declaração de direitos autorais © Гончаренко Р.С., Чванов А.А., Фролов В.А., 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies