Аналитические решения в окрестности устойчивых точек для тросовой системы, закрепленной в коллинеарных точках либрации L1, L2 системы Марс — Фобос

封面
  • 作者: 1, 1
  • 隶属关系:
    1. Самарский национальный исследовательский университет имени академика С.П. Королева (Самарский университет)
  • 期: 卷 1 (2023)
  • 页面: 323-323
  • 栏目: Теоретическая и прикладная механика
  • URL: https://journals.eco-vector.com/osnk-sr2023/article/view/409801
  • ID: 409801

如何引用文章

全文:

详细

Обоснование. Тросовые системы широко применяются в космосе, например, для транспортировки полезной нагрузки на орбите [1], для увода космического мусора [2, 3], для исследования планет и их спутников [4], для изучения других небесных тел [5]. Исследовать поверхность Фобоса с помощью тросовой системы предложено NASA в миссии Phobos L1 Operational Tether Experiment (PHLOTE) [4]. Предполагается, что тросовая система будет закреплена в точке либрации L1 посредством орбитального космического аппарата, расположенного рядом с этой коллинеарной точкой [4]. Точки либрации L1 и L2 находятся на небольшом расстоянии от поверхности Фобоса (~3,4 км). Это позволяет использовать эти точки для исследования не только поверхности спутника Марса, но и космического пространства возле него.

Обоснование. найти аналитические решения в окрестности устойчивых точек для тросовой системы, закреп­ленной в коллинеарной точке либрации L1 или L2 системы Марс — Фобос.

Методы. В работе рассматривается механическая система, состоящая из троса, закрепленного в точке либрации L1 или L2, и груза, прикрепленного к его концу. Дифференциальные уравнения классической ограниченной задачи трех тел используются в качестве математической модели [6]. Уравнения движения тросовой системы постоянной длины получены в полярных координатах с учетом силы натяжения троса. После этого найдены аналитические формулы для силы натяжения троса и исследовано влияние параметров системы на эту силу для статического и динамического случаев.

Результаты. На основе полученных формул выполнено численное моделирование для длины троса, равной 3 км. При увеличении угла отклонения троса от местной вертикали возрастает динамическая сила натяжения, при этом ее значение не превышает 0,14 Н. Статическая сила натяжения не превышает 0,09 Н для массы, равной 50 кг, прикрепленной к концу троса.

Выводы. Численное моделирование показало, что трос растягивается во всех рассматриваемых случаях. При этом сила натяжения троса находится в пределах от 0,09 до 0,14 Н. Результаты работы могут быть полезны для создания миссии подобной PHLOTE.

全文:

Обоснование. Тросовые системы широко применяются в космосе, например, для транспортировки полезной нагрузки на орбите [1], для увода космического мусора [2, 3], для исследования планет и их спутников [4], для изучения других небесных тел [5]. Исследовать поверхность Фобоса с помощью тросовой системы предложено NASA в миссии Phobos L1 Operational Tether Experiment (PHLOTE) [4]. Предполагается, что тросовая система будет закреплена в точке либрации L1 посредством орбитального космического аппарата, расположенного рядом с этой коллинеарной точкой [4]. Точки либрации L1 и L2 находятся на небольшом расстоянии от поверхности Фобоса (~3,4 км). Это позволяет использовать эти точки для исследования не только поверхности спутника Марса, но и космического пространства возле него.

Обоснование. найти аналитические решения в окрестности устойчивых точек для тросовой системы, закреп­ленной в коллинеарной точке либрации L1 или L2 системы Марс — Фобос.

Методы. В работе рассматривается механическая система, состоящая из троса, закрепленного в точке либрации L1 или L2, и груза, прикрепленного к его концу. Дифференциальные уравнения классической ограниченной задачи трех тел используются в качестве математической модели [6]. Уравнения движения тросовой системы постоянной длины получены в полярных координатах с учетом силы натяжения троса. После этого найдены аналитические формулы для силы натяжения троса и исследовано влияние параметров системы на эту силу для статического и динамического случаев.

Результаты. На основе полученных формул выполнено численное моделирование для длины троса, равной 3 км. При увеличении угла отклонения троса от местной вертикали возрастает динамическая сила натяжения, при этом ее значение не превышает 0,14 Н. Статическая сила натяжения не превышает 0,09 Н для массы, равной 50 кг, прикрепленной к концу троса.

Выводы. Численное моделирование показало, что трос растягивается во всех рассматриваемых случаях. При этом сила натяжения троса находится в пределах от 0,09 до 0,14 Н. Результаты работы могут быть полезны для создания миссии подобной PHLOTE.

×

作者简介

Самарский национальный исследовательский университет имени академика С.П. Королева (Самарский университет)

Email: neryadovskayadv@yandex.ru
ORCID iD: 0009-0007-0352-9910

студентка, группа 1235-010403D, институт авиационной и ракетно-космической техники

俄罗斯联邦, Самара

Самарский национальный исследовательский университет имени академика С.П. Королева (Самарский университет)

编辑信件的主要联系方式.
Email: aslanov_vs@mail.ru
ORCID iD: 0000-0003-4065-137X
SPIN 代码: 8989-4614
Scopus 作者 ID: 6603084891
https://ssau.ru/staff/59885001-aslanov-vladimir-stepanovich

научный руководитель, профессор, заведующий кафедрой теоретической механики

 

俄罗斯联邦, Самара

参考

  1. Aslanov V.S., Ledkov A.S. Swing principle in tether-assisted return mission from an elliptical orbit // Aerosp Sci Technol. 2017. Vol. 71. P. 156–162. doi: 10.1016/j.ast.2017.09.006
  2. Пикалов Р.С., Юдинцев В.В. Обзор и выбор средств увода крупногабаритного космического мусора // Труды МАИ. 2018. № 100. С. 1–37.
  3. Асланов В.С., Юдинцев В.В. Тросовая буксировка объекта космического мусора с полостью, заполненной жидкостью // Труды МАИ. 2017. № 97. С. 1–23.
  4. Kempton K., Pearson J., Levin E., et al. Phase 1 study for the Phobos l1 operational tether experiment (PHLOTE). End Report. NASA, 2018. 91 p.
  5. Mashayekhi M.J., Misra A.K. Optimization of tether-assisted asteroid deflection // J Guid Control Dyn. 2014. Vol. 37, No. 3. P. 898–906. doi: 10.2514/1.60176
  6. Маркеев А.П. Точки либрации в небесной механике и космодинамике. Москва: Наука, 1978. 312 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Нерядовская Д.В., Асланов В.С., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##