Modeling of the increased intraocular pressure effect on changes in the stress state of the eyeball’s internal structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The aim of the study was creating a model and evaluating the effect of elevated IOP in the anterior chamber during phacoemulsification on the changes in the stress state of various ocular structures.

Materials and methods. A simplified axial symmetrical anatomical model of the eyeball was created using the finite element method. Using the Deform software package, the deformation problem was worked out by calculating the redistribution of the excess pressure in the anterior chamber during phacoemulsification, on the changes in the stress state of different ocular structures. Results. At processing of modeling results, data were obtained on redistribution of the excess pressure delivered to the anterior chamber towards its decrease in the posterior pole area. The pressure level amounted to 0.85 % of excess pressure applied. The findings are supported by few animal experiments.

Conclusions. Proposed model of the increased IOP level effect on changes in the stressed state of various ocular structures demonstrates that the autoregulation mechanism maintaining ocular blood flow at a constant level includes a compensating mechanism for a steep IOP increase due to elastic properties of the vitreous body. This model allows calculating the redistribution of pressure in different parts of the eyeball, depending on the state of resilient-elastic properties of the vitreous, as well as on avitreal eyes, and in patients with silicone oil tamponade.

Full Text

Restricted Access

About the authors

Yuri V. Takhtaev

St. Petersburg Pavlov Medical University of the Ministry of Health of Russia


MD, Professor of the Ophthalmology Department. I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russia

Russian Federation, St. Petersburg

Roman B. Shliakman

St. Petersburg Pavlov Medical University of the Ministry of Health of Russia

Author for correspondence.

Resident of Ophthalmology department. I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Health of Russia

Russian Federation, St. Petersburg


  1. Malik PK, Dewan T, Patidar AK, Sain E. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification. Eye Vis (Lond). 2017;4(1):22.
  2. Hejsek L, Kadlecova J, Sin M, et al. Intraoperative intraocular pressure fluctuation during standard phacoemulsification in real human patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163(1):75-79.
  3. Khng C, Packer M, Fine IH, et al. Intraocular pressure during phacoemulsification. J Cataract Refract Surg. 2006;32(2):301-308.
  4. Астахов Ю.С. Основные показатели кровообращения глаза и клинические методы их исследования // Методы исследования микроциркуляции в клинике: Материалы науч. – практ. конференции / под ред. Ю.С. Астахова, Г.В. Ангелопуло. – СПб., 2001. – С. 96–100. [Astakhov YuS. Osnovnye pokazateli krovoobrashcheniya glaza i klinicheskie metody ikh issledovaniya. Proceedings of the Russian science conference “Metody issledovaniya mikrotsirkulyatsii v klinike”. Astakhov YuS, Angelopulo GV, eds. Saint Petersburg; 2001. P. 96-100. (In Russ.)]
  5. Alm A. Ocular circulation. In: Adler’s physiology of the eye. Hart WM, ed. St. Louis, Baltimore: Mosby; 1992. P. 198-227.
  6. Cioffi GA, Granstam E, Alm A, et al. Ocular circulation. In: Adler’s physiology of the eye. Kaufmann PL, Alm A, eds. St. Louis, London: Mosby; 2003. P. 747-784.
  7. Sehi M, Flanagan JG, Zeng L, et al. Relative change in diurnal mean ocular perfusion pressure: a risk factor for the diagnosis of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2005;46(2):561-567.
  8. Nagel E, Vilser D, Fuhrmann G, et al. Dilatation großer Netzhautgefäße nach Intraokulardrucksteigerung. [Dilatation of large retinal vessels after increased intraocular pressure]. (In German.) Ophthalmologe. 2000;97(11):742-747.
  9. Nagel E, Vilser W. Autoregulative behavior of retinal arteries and veins during changes of perfusion pressure: a clinical study. Graefes Arch Clin Exp Ophthalmol. 2004;242(1):13-17.
  10. Волков В.В. Глаукома при псевдонормальном давлении. Руководство для врачей. – М.: Медицина; 2001. – 350 с. [Volkov VV. Glaukoma pri psevdonormal’nom davlenii. Rukovodstvo dlja vrachej. Moscow: Medicina; 2001. 350 p. (In Russ.)]
  11. Srirekha A, Bashetty K. Infinite to finite: an overview of finite element analysis. Indian J Dent Res. 2010;21(3):425-432.
  12. Fernández CD, Niazy AM, Kurtz RM, et al. Finite element analysis applied to cornea reshaping. J Biomed Opt. 2005;10(6):064018.
  13. Ayyalasomayajula A, Park RI, Simon BR, Vande Geest JP. A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics. Comput Methods Biomech Biomed Engin. 2016;19(6):591-602.
  14. Grytz R, Krishnan K, Whitley R. et al. A Mesh-Free Approach to Incorporate Complex Anisotropic and Heterogeneous Material Properties into Eye-Specific Finite Element Models. Comput Methods Appl Mech Eng. 2020;(1):358.
  15. Olsen T, Ehlers N. The thickness of the human cornea as determined by a specular method. Acta Ophthalmologica. 1984;62(6): 859-871.
  16. Hoffer KJ, Savini G. Anterior chamber depth studies. J Cataract Refract Surg. 2015;41(9):1898-1904.
  17. Sebag J. Vitreous Anatomy, Aging, and Anomalous Posterior Vitreous Detachment. In: Encyclopedia of the Eye. Dartt DA, ed. Academic Press; 2010. P. 307-315.
  18. Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125(2): 237-241.
  19. Invernizzi A, Cigada M, Savoldi L. In vivo analysis of the iris thickness by spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98(9):1245-1249. 10.1136/bjophthalmol-2013-304481
  20. Okamoto Y, Okamoto F, Nakano S, Oshika T. Morphometric assessment of normal human ciliary body using ultrasound biomicroscopy. Graefes Arch Clin Exp Ophthalmol. 2017;255(12): 2437-2442.
  21. Rasheed MA, Singh SR, Invernizzi A, et al. Wide-field choroidal thickness profile in healthy eyes. Sci Rep. 2018;8(1):17166.
  22. Giani A, Cigada M, Choudhry N, et al. Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol. 2010;150(6):815-824.
  23. Topcu H, Altan C, Cakmak S, et al. Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects. Photodiagnosis and Photodynamic Therapy. 2020;31:101832.
  24. Azhdam AM, Goldberg RA, Ugradar S. In Vivo Measurement of the Human Vitreous Chamber Volume Using Computed Tomography Imaging of 100 Eyes. Trans Vis Sci. Tech. 2020;9(1):2.
  25. Иомдина Е.Н., Бауэр С.М., Котляр К.Е. Биомеханика глаза: теоретические аспекты и клинические приложения / под ред. Нероева В.В. – М.: Реал Тайм, 2015. – 208 c. [Iomdina EN, Baujer SM, Kotljar KE. Biomehanika glaza: teoreticheskie aspekty i klinicheskie prilozhenija. Neroeva VV, ed. Moscow: Real Tajm; 2015. 208 p. (In Russ.)]
  26. Sit AJ, Lin SC, Kazemi A, et al. In Vivo Noninvasive Measurement of Young’s Modulus of Elasticity in Human Eyes: A Feasibility Study. J Glaucoma. 2017;26(11):967-973. 10.1097/IJG.0000000000000774
  27. Jones IL, Warner M, Stevens JD. Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus. Eye (Lond). 1992;6(Pt 6):556-559.
  28. Tram NK, Swindle-Reilly KE. Rheological Properties and Age-Related Changes of the Human Vitreous Humor. Front Bioeng Biotechnol. 2018;6:199. 10.3389/fbioe.2018.00199.
  29. Nagae K, Sawamura H, Aihara M. Investigation of intraocular pressure of the anterior chamber and vitreous cavity of porcine eyes via a novel method. Scientific Reports. 2020;10:20552.

Supplementary files

Supplementary Files
1. Fig. 1. Computer axisymmetric eyeball model

Download (94KB)
2. Fig. 2. Scheme of the intraocular structures surface loading with a stepwise increase in pressure in the anterior chamber

Download (88KB)
3. Fig. 3. Distribution of mean stresses (hydrostatic pressure) in the eyeball, caused by an excess pressure of 10 KPa in the anterior chamber

Download (50KB)
4. Fig. 4. Distribution of mean stresses (hydrostatic pressure) in the vitreous body

Download (46KB)
5. Fig. 5. Normal pressure changes at the control points depending on pressure level in the anterior chamber (points P1–P4 — different parts of the retina: optic nerve head, zone of vascular arcades, equator)

Download (61KB)
6. Fig. 6. Dependence of pig’s eye pressure redistribution in the vitreous body with an intraocular pressure increase in the anterior chamber: а – according to [29]; b – during modeling

Download (107KB)

Copyright (c) 2020 Takhtaev Y.V., Shliakman R.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies