Non-standard computer perimetry in the diagnosis of some optic neuropathies

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Modern computer perimetry is divided into traditional – white stimulus-on-white background, the gold standard of which is perimetry performed by using expert class perimeters Humphrey and Octopus and therefore called standard automatic or automated perimetry (SAP), and non-traditional or non-standard perimetry, which differs, first of all, in a different nature of a stimulus. The article is a review devoted to the assessment of the diagnostic capabilities of non-standard computer perimetry in the form of different variants of perimetry with doubling the spatial frequency (Frequency Doubling Technology Perimetry or FDT perimetry), which is performed by using perimeters of the 1st (Carl Zeiss Humphrey 710 Visual Field / FDT, 1997) and the 2nd (Carl Zeiss Humphrey Matrix / HM 715, 800 Visual Field Analyzer, 2005, 2010) generation. Most authors consider that FDT perimetry is effective in a glaucoma screening and, possibly, in monitoring a glaucomatous process, but only a few authors consider that non-standard perimetry method can be useful in diagnosing optic neuropathies of a different nature.

Full Text

Restricted Access

About the authors

Irina A. Tikhonovskaya

S.M. Kirov Military Medical Academy

ORCID iD: 0000-0002-7518-8437

Russian Federation, 21 Botkinskaya st., Saint Petersburg, 195009


Irina L. Simakova

S.M. Kirov Military Medical Academy

Author for correspondence.
ORCID iD: 0000-0001-8389-0421
SPIN-code: 3422-5512
Scopus Author ID: 7003824052
ResearcherId: M - 3460-2016

Russian Federation, 21 Botkinskaya st., Saint Petersburg, 195009

MD, Dr. Sci. (Med.)


  1. Sheremet NL. Diagnostika opticheskih nejropatij razlichnogo geneza [dissertation]. Moscow, 2015. (In Russ.)
  2. Neroev VV. Invalidnost’ po zreniju v Rossijskoj Federacii. Rossijskij oftal’mologicheskij congress. Proceedings of the Russian science conference “Belye Nochi”. St. Petersburg, 2017:28–30. (In Russ.)
  3. Badimova AV. Epidemiological features of eye disorders morbidity and disability in Russia and abroad. Science of the young (Eruditio Juvenium). 2020;8(2):261–268. (In Russ). doi: 10.23888/HMJ202082261-268
  4. Simakova IL. Perimetrija s udvoennoj prostranstvennoj chastotoj kak osnova skrininga na glaukomu i monitoringa glaukomatoznogo processa [dissertation]. Saint Petersburg, 2010. (In Russ.)
  5. Volkov VV. Glaukoma otkrytougol’naja. Moscow: Med. inform. agentstvo, 2008. (In Russ.)
  6. Serdyukova SA, Simakova IL. Computer perimetry in the diagnosis of primary open-angle glaucoma. Ophthalmology journal. 2018;11(1):54–65. (In Russ.) doi: 10.17816/OV11154-65
  7. Kunimatsu S, Tomita G, Araie M, et al. Frequency doubling technology and scanning laser tomography in eyes with generalized enlargement of optic disc cupping. J Glaucoma. 2005;14(4):280–287. doi: 10.1097/01.ijg.0000169392.02180.5b
  8. Medeiros FA, Sample PA, Zangwill LM, et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. Investig Ophthalmol Vis Sci. 2006;47(6):2520–2527. doi: 10.1167/iovs. 05-1441
  9. Terry AL, Paulose-Ram R, Tilert TJ, et al. The methodology of visual field testing with frequency doubling technology in the National Health and Nutrition Examination Survey, 2005–2006. Ophthalmic Epidemiol. 2010;17(6):411–421. doi: 10.3109/09286586.2010.528575
  10. Weinreb R, Greve E. Progression of Glaucoma: the 8th consensus report of the world glaucoma association. Netherlands, Amsterdam: Kugler Publications, 2011. 170 p.
  11. Zeppieri M, Johnson CA. Frequency doubling technology (FDT) perimetry. Imaging and perimetry society. 2013.
  12. Boland MV, Gupta P, Ko F, et al. Evaluation of frequency-doubling technology perimetry as a means of screening for glaucoma and other eye diseases using the National Health and Nutrition Examination Survey. JAMA Ophthalmol. 2016;134(1):57-62. doi: 10.1001/jamaophthalmol.2015.4459
  13. Camp AS, Weinreb RN. Will рerimetry be performed to monitor glaucoma in 2025? Ophthalmology. 2017;124(12):71–75. doi: 10.1016/j.ophtha.2017.04.009
  14. Jung KI, Park CK. Detection of functional change in preperimetric and perimetric glaucoma using 10-2 matrix perimetry. Am J Ophthalmol. 2017;182:35–44. doi: 10.1016/j.ajo.2017.07.007
  15. Furlanetto RL, Teixeira SH, Gracitelli CPB, et al. Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma. PLoS ONE. 2018;13(3): e0194038. doi: 10.1371/journal.pone.0194038
  16. Terauchi R, Wada T, Ogawa S, et al. FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service. J Ophthalmol. 2020;2020. doi: 10.1155/2020/4687398
  17. Corallo G, Cicinelli S, Papadia M, et al. Conventional perimetry, short-wavelength automated perimetry, frequency-doubling technology, and visual evoked potentials in the assessment of patients with multiple sclerosis. Eur J Ophthalmol. 2005;15:730–738. doi: 10.1177/112067210501500612
  18. Ruseckaite R, Maddess TD, James AC, et al. Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis. Doc Ophthalmol. 2006;113(1):29–41. doi: 10.1007/s10633-006-9011-3
  19. Shahraki K, Mostafa SS, Kaveh AA, et al. Comparing the Sensitivity of Visual Evoked Potential and Standard Achromatic Perimetry in Diagnosis of Optic Neuritis. JOJ Ophthal. 2017;2(5):555–600. doi: 10.19080/JOJO.2017.02.555600003
  20. Merle H, Olindo S, Donnio A, et al. Retinal Nerve Fiber Layer Thickness and Spatial and Temporal Contrast Sensitivity in Multiple Sclerosis. Eur J Ophthalmol. 2018;20(1):158–166. doi: 10.1177/112067211002000122
  21. Yoon MK, Hwang TN, Day S, et al. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease. Middle East Afr J Ophthalmol. 2012;(19):211–215. doi: 10.4103/0974-9233.95254
  22. Arantes TE, Garcia CR, Mello PA, et al. Structural and functional assessment in HIV-infected patients using optical coherence tomography and frequency-doubling technology perimetry. Am J Ophthalmol. 2010;149(4):571–576. doi: 10.1016/j.ajo.2009.11.026
  23. Arantes TE, Garcia CR, Tavares IM, et al. Relationship between retinal nerve fiber layer and visual field function in human immunodeficiency virus-infected patients without retinitis. Retina. 2012;32(1):152–159. doi: 10.1097/IAE.0b013e31821502e1
  24. Moyal L, Blumen-Ohana E, Blumen M, et al. Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1235–1243. doi: 10.1007/s00417-018-3943-7
  25. Walsh DV, Capó-Aponte JE, Jorgensen-Wagers K, et al. Visual field dysfunctions in warfighters during different stages following blast and nonblast mTBI. Mil Med. 2015;180(2):178–185. doi: 10.7205/MILMED-D-14-00230
  26. Cesareo M, Martucci A, Ciuffoletti E, et al. Association between Alzheimer’s disease and glaucoma: a study based on Heidelberg retinal tomography and frequency doubling technology perimetry. Front Neurosci. 2015;9:479. doi: 10.3389/fnins.2015.00479
  27. Aykan U, Akdemir MO, Yildirim O, et al. Screening for patients with mild Alzheimer Disease using frequency doubling technology perimetry. Neuro-Ophthalmology. 2013;37(6):239–246. DOI: 10.3109/ 01658107.2013.830627
  28. Simakova IL, Volkov VV, Bojko JV, et al. Sozdanie metoda perimetrii s udvoennoj prostranstvennoj chastotoj za rubezhom i v Rossii. National Journal glaucoma. 2009;8(2):5–21. (In Russ.)
  29. Simakova IL, Volkov VV, Bojko JV. Sravnenie rezul’tatov razrabotannogo metoda perimetrii s udvoennoj prostranstvennoj chastotoj i original’nogo metoda FDT-perimetrii. National Journal glaucoma. 2010;9(1):5–11. (In Russ.)
  30. Boiko EV, Simakova IL, Kuzmicheva OV, et al. High-technological screening for glaucoma. Voenno-medicinskij zhurnal. 2010;331(2):23–26. (In Russ.) doi: 10.1007/BF03358198
  31. Burgansky-Eliash Z, Wollstein G, Patel A, et al. Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol. 2007;91(7):933–938. doi: 10.1136/bjo.2006.110437
  32. Han S, Baek SH, Kim US. Comparison of Three Visual Field Tests in Children: Frequency Doubling Test, 24-2 and 30-2 SITA Perimetry. Semin Ophthalmol. 2017;32(5):647–650. doi: 10.3109/08820538.2016.1157611
  33. Simakova IL, Boiko EV. Impact of cataract and age-related macular denegeration on the results of various perimetry techniques. The Russian Annals of Ophthalmology. 2010;126(3):10–14. (In Russ.)
  34. Casson RJ, James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma. 2006;15(1):23–25. doi: 10.1097/01.ijg.0000197089.53354.6f
  35. Erichev VP, Petrov SY, Kozlova IV, et al. Modern methods of functional diagnostics and monitoring of glaucoma. Part 1. Perimetry as a functional diagnostics method. National Journal glaucoma. 2015;14(2):75–81. (In Russ.)
  36. Lamparter J, Russell RA, Schulze A, et al. Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Investig Ophthalmol Vis Sci. 2012;53(12):7553–7559. doi: 10.1167/iovs.12-10892
  37. Kanadani FN, Mello PA, Dorairaj SK, et al. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients. Clin Ophthalmol. 2014;8:1323. doi: 10.2147/OPTH.S64684
  38. Patel A, Wollstein G, Ishikawa H, et al. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry. Ophthalmology. 2007;114:480–487. doi: 10.1016/j.ophtha.2006.08.009
  39. McManus JR, Netland PA. Screening for glaucoma: rationale and strategies. Curr Opin Ophthalmol. 2013;24(2):144–149. doi: 10.1097/ICU.0b013e32835cf078
  40. Johnson CA. Screening for glaucomatous visual field loss with Frequency Doubling perimetry. Investig Ophthalmol Vis Sci. 1997;3(2):413–424
  41. Artes PH, Hutchison DM, Nicolela MT, et al. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Investig Ophthalmol Vis Sci. 2005;46(7):2451–2457. doi: 10.1167/iovs.05-0135
  42. Balian C. Structure and Function in Early Glaucoma. 2017.
  43. Addepalli UK. Validating the ability of a vision technician in detecting glaucoma in a south Indian rupal population [dissertation]. University of New South Wales, 2018.
  44. Iwase A, Tomidokoro A, Araie M. Performance of Frequency-Doubling Technology perimetry in a population-based prevalence survey of glaucoma. Ophthalmology. 2007;114(1):27–32. doi: 10.1016/j.ophtha.2006.06.041
  45. Mansberger SL, Edmunds B, Johnson CA, et al. Community visual field screening: prevalence of follow-up and factors associated with follow-up of participants with abnormal frequency doubling perimetry technology results. Ophthalmic Epidemiol. 2007;14(3): 134–140. doi: 10.1080/09286580601174060
  46. Racette L, Medeiros FA, Zangwill LM, et al. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Investig Ophthalmol Vis Sci. 2008;49(3):954–960. doi: 10.1167/iovs. 07-0493
  47. Giuffrè I. Frequency Doubling Technology vs Standard Automated Perimetry in Ocular Hypertensive Patients. Open Ophthalmol J. 2009;24(3):6–9. doi: 10.2174/1874364100903010006
  48. Choi JA, Lee NY, Park CK. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol. 2009;53(1):24–30. doi: 10.1007/s10384-008-0604-0
  49. Prokosch V, Eter N. Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry. Graefe’s Arch Clin Exp Ophthalmol. 2014;252:1599–1606. doi: 10.1007/s00417-014-2718-z
  50. Meira-Freitas D, Tatham AJ, Lisboa R, et al. Predicting progression of glaucoma from rates of frequency doubling technology perimetry change. Ophthalmology. 2014;121(2):498–507. doi: 10.1016/j.ophtha.2013.09.016
  51. Horn FK, Scharch V, Mardin CY, et al. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma. Graefe’s Arch Clin Exp Ophthalmol. 2016;254(5):937–946. doi: 10.1007/s00417-016-3286-1
  52. Park HYL, Lee J, Park CK. Visual field tests for glaucoma patients with initial macular damage: comparison between frequency-doubling technology and standard automated perimetry using 24-2 or 10-2 visual fields. J Glaucoma. 2018;27(7):627–634. doi: 10.1097/IJG.0000000000000977
  53. Morejon A, Mayo-Iscar A, Martin R, et al. Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care. Clin Ophthalmol. 2019;13:33–42. doi: 10.2147/OPTH.S177581
  54. Xin D, Greenstein VC, Ritch R, et al. A comparison of functional and structural measures for identifying progression of glaucoma. Investig Ophthalmol Vis Sci. 2011;52(1):519–526. doi: 10.1167/iovs.10-5174
  55. Hu R, Wang C, Racette L. Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes. PLoS ONE. 2017;12(5):1–14. doi: 10.1371/journal.pone.0178079
  56. Wesselink C, Jansonius NM. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study. Ophthalmic Physiol Opt. 2017;37(5):594–601. doi: 10.1111/oро.12401
  57. Wall M, Johnson CA, Zamba KD. SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression. Br J Ophthalmol. 2018;102:1396–1401. doi: 10.1136/bjophthalmol-2017-310894
  58. Brusini P, Salvetat ML, Zeppieri M, et al. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma. 2006;15(2):77–83. doi: 10.1097/00061198-200604000-00001
  59. Liu S, Yu M, Weinreb RN, et al. Frequency-DoublingTechnology Perimetry for Detection of the Development of Visual Field Defects in Glaucoma Suspect Eyes. JAMA Ophthalmol. 2014;132(1):77–83. doi: 10.1001/jamaophthalmol.2013.5511
  60. Clement CI, Goldberg I, Healey PR, et al. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma. Br J Ophthalmol. 2009;93(5):582–588. doi: 10.1136/bjo.2007.119909
  61. Leeprechanon N, Giangiacomo A, Fontana H, et al. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Am J Ophthalmol. 2007;143(2):263–271. doi: 10.1016/j.ajo.2006.10.033
  62. Yousefi S, Goldbaum MH, Zangwill LM, et al. Recognizing patterns of visual field loss using unsupervised machine learning. Proc SPIE Int Soc Opt Eng. 2014:90342. doi: 10.1117/12.2043145
  63. Alawa КА, Nolan RP, Han E, et al. Low-cost, smartphone-based frequency doubling technology visual field testing using a headmounted display. Br J Ophthalmol. 2019;105(3):440–444. doi: 10.1136/bjophthalmol-2019-314031.
  64. Pinto LM, Costa EF, Melo LA, et al. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices. Investig Ophthalmol Vis Sci. 2014;55:3074–3080. doi: 10.1167/iovs.13-13664
  65. Doozandeh A, Irandoost F, Mirzajani A, et al. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma. Medical Hypothesis, Discovery and Innovation in Ophthalmology. 2017;6(3):98–104.
  66. Morozov VI, Jakovlev AA. Zabolevanija zritel’nogo puti. Klinika, diagnostika, lechenie. Moscow: BINOM, 2010. (In Russ.)
  67. Ishmanova SA. Jekzogennye i jendogennye faktory, opredeljajushhie osobennosti kliniki i techenija rassejannogo skleroza [dissertation]. Kazan, 2003 (In Russ.)
  68. Confavreux C, Vukusic S. The clinical epidemiology of multiple sclerosis. Neuroimaging Clin N Am. 2008;18(4):589–622. doi: 10.1016/j.nic.2008.09.002
  69. Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. Seminars in neurology. 2008;28(1):17–28. doi: 10.1055/s-2007-1019126
  70. Levin LI, Kassandra L, Munger ScD, et al. Primary infection with the Epstein–Barr virus and risk of multiple sclerosis. Annal Neurol. 2010;67(6):824–830. doi: 10.1002/ana.21978
  71. Bahinski FV, Galinovskaja NV, Usova NN, et al. Multiple sclerosis: modern view on the problem (literature review). Problemy zdorov’ja i jekologii. 2010;(25):75–80. (In Russ.)
  72. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2.
  73. Kicherova OA, Reikhert LI. Demyelinating diseases: the correctness of the wording of a medical and moral positions (literature review). Medicinskaja nauka i obrazovanie Urala. 2019;20(4):186–192. (In Russ.)
  74. Costello F. The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. International Scholarly Research Notices Neurology. 2013;2013:134858. doi: 10.1155/2013/134858
  75. Bisaga GN, Gajkova ON, Onishhenko LS, et al. Morfologicheskie osobennosti ochagov demielinizacii v kore golovnogo mozga pri rassejannom skleroze. Neurology Bulletin. 2010;42(1):127–128. (In Russ.)
  76. Shmidt TE, Jahno NN. Rassejannyj skleroz. Moscow: MEDpress-inform, 2010. 272 p. (In Russ.)
  77. Kovalenko AV, Bisaga GN, Gaykova ON, et al. Pathomorphology damage of the optic nerve and chiasm in multiple sclerosis. Bulletin of the Russian Military Medical Academy. 2011;3(35): 126–132. (In Russ.)

Supplementary files

There are no supplementary files to display.



Abstract - 52

PDF (Russian) - 5


Article Metrics

Metrics Loading ...



Copyright (c) 2021 Tikhonovskaya I.A., Simakova I.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies