The role of artificial intelligence in modern ophthalmology

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, artificial intelligence is actively being introduced into various spheres of life, and medicine is no exception. In ophthalmology, the use of artificial intelligence is very promising, given that the diagnosis and therapeutic monitoring of eye diseases often depend heavily on the correct interpretation of images. The use of artificial intelligence in ophthalmology focuses on eye diseases that lead to vision loss, such as age-related macular degeneration, diabetic retinopathy, glaucoma and cataract. Over the past few years, artificial intelligence has reached tremendous successes in the practice of ophthalmology. Many studies have shown that artificial intelligence performance is equal to and even exceeds the capabilities of ophthalmologists in many diagnostic and prognostic tasks. However, there is still a lot of work to be done before introducing artificial intelligence into routine clinical practice. Issues such as real-world performance, generalizability, and interpretability of artificial intelligence systems are still poorly understood and will require more attention in future research. Most artificial intelligence-based systems are used in developed countries, and some require further study. High costs and a shortage in doctors and equipment in some regions of the Russian Federation and rural areas make it difficult to screen for eye diseases. Although the field of artificial intelligence is underdeveloped, we hope that artificial intelligence will play an important role in the future of ophthalmology by making healthcare more efficient, accurate and accessible, especially in regions where staffing problems exist.

Full Text

Restricted Access

About the authors

Sabina S. Mamedova

Rostov State Medical University

Author for correspondence.
Email: neurosurg@bk.ru
ORCID iD: 0009-0007-7485-4710
Russian Federation, 29 Nakhichevanskii lane, Rostov-on-Don, 344022

Alsu I. Karimova

Bashkir State Medical University

Email: akarimova20000@gmail.com
ORCID iD: 0009-0002-7244-5669
Russian Federation, Ufa

Adelia F. Galieva

Bashkir State Medical University

Email: adelia_144@mail.ru
ORCID iD: 0009-0008-7369-1064
Russian Federation, Ufa

Maria A. Malkhanova

Academician Pavlov First Saint Petersburg State Medical University

Email: mariamalhanova00971@gmail.com
ORCID iD: 0009-0004-4860-0803
Russian Federation, Saint Petersburg

Sofya S. Polyankina

Bashkir State Medical University

Email: s.polyankina@bk.ru
ORCID iD: 0009-0003-6025-1426
Russian Federation, Ufa

Aigul I. Kuchumova

Bashkir State Medical University

Email: aigelikaaa@gmail.com
ORCID iD: 0009-0002-5243-4364
Russian Federation, Ufa

Yana Ya. Tarasova

Bashkir State Medical University

Email: tarasooova.02@gmail.com
ORCID iD: 0009-0003-4139-5539
Russian Federation, Ufa

Dmitry U. Tsuan

Rostov State Medical University

Email: dimka200131@gmail.com
ORCID iD: 0009-0000-6657-3846
Russian Federation, 29 Nakhichevanskii lane, Rostov-on-Don, 344022

Olga V. Klets

Rostov State Medical University

Email: klets_olya@mail.ru
ORCID iD: 0009-0009-9507-0901
Russian Federation, 29 Nakhichevanskii lane, Rostov-on-Don, 344022

Veronika N. Gerbutova

Rostov State Medical University

Email: veronika628256@gmail.com
ORCID iD: 0009-0000-9922-8766
Russian Federation, 29 Nakhichevanskii lane, Rostov-on-Don, 344022

Andrey V. Olenichev

Bashkir State Medical University

Email: a.olenichev@inbox.ru
ORCID iD: 0009-0000-7677-5329
Russian Federation, Ufa

Eliza O. Ushakova

Bashkir State Medical University

Email: a.olenichev@inbox.ru
ORCID iD: 0009-0000-8178-8685
Russian Federation, Ufa

Aigul K. Minnikhalilova

Bashkir State Medical University

Email: aigul2ka837857@gmail.com
ORCID iD: 0009-0001-8068-6078
Russian Federation, Ufa

References

  1. Khusanov UA, Kudratillaev MB, Siddikov BN, Dovletova SB. Artificial intelligence in medicine. Science and Education. 2023;4(5): 772–782.
  2. Gaifullin EO. Artificial intelligence in medicine. Ceteris paribus. 2023;(5):118–122. EDN: GQXLIT
  3. Phene S, Dunn RC, Hammel N, et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmology. 2019;126(12):1627–1639. doi: 10.1016/j.ophtha.2019.07.024
  4. Li Z, Guo C, Lin D, et al. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images. Br J Ophthalmol. 2021;105(11):1548–1554. doi: 10.1136/bjophthalmol-2020-317327
  5. Dow ER, Keenan TDL, Lad EM, et al. Collaborative community for ophthalmic imaging executive committee and the working group for artificial intelligence in age-related macular degeneration. From data to deployment: The collaborative community on ophthalmic imaging roadmap for artificial intelligence in age-related macular degeneration. Ophthalmology. 2022;129(5):43–59. doi: 10.1016/j.ophtha.2022.01.002
  6. Ting DSJ, Foo VH, Yang LWY, et al. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. Br J Ophthalmol. 2021;105(2):158–168. doi: 10.1136/bjophthalmol-2019-315651
  7. Li Z, Jiang J, Chen K, et al. Preventing corneal blindness caused by keratitis using artificial intelligence. Nat Commun. 2021;12(1):3738. doi: 10.1038/s41467-021-24116-6
  8. Keenan TDL, Chen Q, Agrón E, et al. AREDS Deep Learning Research Group. DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity. Ophthalmology. 2022;129(5):571–584. doi: 10.1016/j.ophtha.2021.12.017
  9. Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol Retina. 2018;2(1):24–30. doi: 10.1016/j.oret.2017.03.015
  10. Keskinbora K, Güven F. Artificial intelligence and ophthalmology. Turk J Ophthalmol. 2020;50(1):37–43. doi: 10.4274/tjo.galenos.2020.78989
  11. Bali J, Bali O. Artificial intelligence in ophthalmology and healthcare: An updated review of the techniques in use. Indian J Ophthalmol. 2021;69(1):8–13. doi: 10.4103/ijo.IJO_1848_19
  12. Moraru AD, Costin D, Moraru RL, Branisteanu CB. Artificial intelligence and deep learning in ophthalmology — present and future (Review). Exp Ther Med. 2020;20(4):3469–3473. doi: 10.3892/etm.2020.9118
  13. Ahuja AS, Wagner IV, Dorairaj S, et al. Artificial intelligence in ophthalmology: A multidisciplinary approach. Integr Med Res. 2022;11(4):100888. doi: 10.1016/j.imr.2022.100888
  14. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–273. doi: 10.1007/s12194-017-0406-5
  15. Lee CS, Brandt JD, Lee AY. Big Data and artificial intelligence in ophthalmology: Where are we now? Ophthalmol Sci. 2021;1(2):100036. doi: 10.1016/j.xops.2021.100036
  16. Garri DD, Saakyan SV, Khoroshilova-Maslova IP, et al. Мethods of machine learning in ophthalmology: Review. Ophthalmology in Russia. 2020;17(1):20–31. EDN: RSCNAV doi: 10.18008/1816-5095-2020-1-20-31
  17. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104–123. EDN: DVDJWJ doi: 10.14341/DM13035
  18. Lev IV, Milyusin VE, Yastrebtsev MD. Diabetic retinopathy among ophthalmological complications of diabetes mellitus and other ophthalmopathology. Current problems of health care and medical statistics. 2023;(1):240–251. EDN: CQRRHL doi: 10.24412/2312-2935-2023-1-240-251
  19. Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob Health. 2021;9(4):489–551. doi: 10.1016/S2214-109X(20)30488-5
  20. Odilov MYu. Improving the treatment of diabetic retinopathy. Research Journal of Trauma and Disability Studies. 2023;2(10):86–90.
  21. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–2410. doi: 10.1001/jama.2016.17216
  22. Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–2223. doi: 10.1001/jama.2017.18152
  23. Tang F, Luenam P, Ran AR, et al. Detection of diabetic retinopathy from ultra-widefield scanning laser ophthalmoscope images: A multicenter deep learning analysis. Ophthalmol Retina. 2021;5(11): 1097–1106. doi: 10.1016/j.oret.2021.01.013
  24. Engelmann J, McTrusty AD, MacCormick IJC, et al. Detecting multiple retinal diseases in ultra-widefield fundus imaging and data-driven identification of informative regions with deep learning. Nat Mach Intell. 2022;4:1143–1154. doi: 10.1038/s42256-022-00566-5
  25. Demidova TY, Kozhevnikov AA. Diabetic retinopathy: history, modern approaches to management, prospective views of prevention and treatment. Diabetes mellitus. 2020;23(1):95–105. EDN: ECFMZS doi: 10.14341/DM10273
  26. Dai L, Wu L, Li H, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat Commun. 2021;12(1):3242. doi: 10.1038/s41467-021-23458-5
  27. Bora A, Balasubramanian S, Babenko B, et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health. 2021;3(1):E10–E19. doi: 10.1016/S2589-7500(20)30250-8
  28. Arcadu F, Benmansour F, Maunz A, et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit Med. 2019;2:92. doi: 10.1038/s41746-019-0172-3
  29. Movsisyan AB, Kuroedov AV, Arkharov MA, et al. Epidemiological analysis primary open-angle glaucoma incidence and prevalence in Russia. Russian journal of clinical ophthalmology. 2022;22(1):3–10. EDN: VIMPIU doi: 10.32364/2311-7729-2022-22-1-3-10
  30. Tham Y-C, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013
  31. Movsisyan AB, Kuroyedov AV. Making a diagnosis of glaucoma at the present time. Russian journal of clinical ophthalmology. 2023;23(1): 47–53. EDN: BFGXMR doi: 10.32364/2311-7729-2023-23-1-47-53
  32. Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care. 2018;41(12):2509–2516. doi: 10.2337/dc18-0147
  33. Machekhin VA, Fabrikantov OL, L’vov VA. Applications of optical coherence tomography in glaucoma. The Russian annals of ophthalmology. 2019;135(2):130–137. EDN: XUXVBD doi: 10.17116/oftalma2019135021130
  34. Ran AR, Cheung CY, Wang X, et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. Lancet Digit Health. 2019;1(4):172–182. doi: 10.1016/S2589-7500(19)30085-8
  35. Fu H, Baskaran M, Xu Y, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol. 2019;203:37–45. doi: 10.1016/j.ajo.2019.02.028
  36. Yousefi S, Kiwaki T, Zheng Y, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol. 2018;193:71–79. doi: 10.1016/j.ajo.2018.06.007
  37. Wang M, Shen LQ, Pasquale LR, et al. An artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis. Invest Ophthalmol Vis Sci. 2019;60(1): 365–375. doi: 10.1167/iovs.18-25568
  38. Ivakhnenko OI, Neroyev VV, Zaytseva OV. Age-related macular degeneration and diabetic eye lesion. Socio-economic aspects. The Russian annals of ophthalmology. 2021;137(1):123–129. EDN: CDTVFR doi: 10.17116/oftalma2021137011123
  39. Yangieva N. Implementation of a program for mass prevention and early detection of age-related macular degeneration. in Library. 2020;20(1):676–681.
  40. Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: A deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology. 2019;126(4):565–575. doi: 10.1016/j.ophtha.2018.11.015
  41. Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135(11):1170–1176. doi: 10.1001/jamaophthalmol.2017.3782
  42. Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med. 2020;26(6):892–899. doi: 10.1038/s41591-020-0867-7
  43. Yan Q, Weeks DE, Xin H, et al. Deep-learning-based prediction of late age-related macular degeneration progression. Nat Mach Intell. 2020;2(2):141–150. doi: 10.1038/s42256-020-0154-9
  44. Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125(4):549–558. doi: 10.1016/j.ophtha.2017.10.031
  45. Egorov AE, Movsisyan AB, Glazko NG. State-of-the-art cataract surgery. Nuances and solutions. Russian Journal of Clinical Ophthalmology. 2020;20(3):142–147. EDN: CQPWJM doi: 10.32364/2311-7729-2020-20-3-142-147
  46. Cicinelli MV, Buchan JC, Nicholson M, et al. Cataracts. Lancet. 2023;401(10374):377–389. doi: 10.1016/S0140-6736(22)01839-6
  47. Tham Y-C, Goh JHL, Anees A, et al. Detecting visually significant cataract using retinal photograph-based deep learning. Nat Aging. 2022;2(3):264–271. doi: 10.1038/s43587-022-00171-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies