Toric to monofocal intraocular lens exchange in patient with subepithelial fibroplasia after radial keratotomy. Clinical case

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This clinical case demonstrates the toric to monofocal intraocular lens exchange due to the erroneous assessment of corneal topography in a patient with radial corneal scars after keratotomy. Toric intraocular lens power calculation was performed using initial parameters, when its central optical area was transparent, and at the mid-periphery, approximately 4–5 mm from the central optical area in the upper temporal quadrant, there was a subepithelial fibroplasia present. Postoperative refractive result was not optimal; residual astigmatism was noted, and it was decided to eliminate it by scarification of the epithelium in the area of fibroplasia. This lead to a significant change in keratometry and to practically total restoration of corneal spherical form. IOL exchange was performed, which caused an increase in visual function.

Full Text

Restricted Access

About the authors

Boris E. Malyugin

S. Fyodorov Eye Microsurgery Federal State Institution; Russian University of Medicine; Jules Stein Eye Institute

Author for correspondence.
Email: boris.malyugin@gmail.com
ORCID iD: 0000-0001-5666-3493
SPIN-code: 8906-2787

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences, Honored Scientist of the Russian Federation, Chairman of the Society of Ophthalmologists of Russia

Russian Federation, Moscow; Moscow; Los Angeles, USA

Svetlana Yu. Kalinnikova

S. Fyodorov Eye Microsurgery Federal State Institution

Email: svkalinnikova@gmail.com
ORCID iD: 0000-0002-9109-2400
SPIN-code: 6733-2260

MD

Russian Federation, Moscow

Ivan S. Tkachenko

S. Fyodorov Eye Microsurgery Federal State Institution

Email: dr.ivan.tka@gmail.com
ORCID iD: 0000-0003-1756-7911
SPIN-code: 9756-8239

MD

Russian Federation, Moscow

Anastasia A. Khaletskaya

S. Fyodorov Eye Microsurgery Federal State Institution

Email: khaletskaya261@gmail.com
ORCID iD: 0000-0002-4775-9423

MD

Russian Federation, Moscow

Pavel D. Melovatskiy

Russian University of Medicine

Email: melovatskiy.pavel@gmail.com
ORCID iD: 0000-0002-3500-2220

MD

Russian Federation, Moscow

References

  1. Li A, He Q, Wei L, et al. Comparison of visual acuity between phacoemulsification and extracapsular cataract extraction: a systematic review and meta-analysis. Ann Palliat Med. 2022;11(2):551–559. doi: 10.21037/apm-21-3633
  2. Malyugin BE. Medico-technological system of surgical rehabilitation of cataract patients on the basis of ultrasound phacoemulsification with intraocular lens implantation [dissertation abstract]. Moscow; 2002. 50 p. (In Russ.) EDN: ZLCMWR
  3. Chung J, Bu JJ, Afshari NA. Advancements in intraocular lens power calculation formulas. Curr Opin Ophthalmol. 2022;33(1):35–40. doi: 10.1097/ICU.0000000000000822
  4. Narang R, Agarwal A. Refractive cataract surgery. Curr Opin Ophthalmol. 2024;35(1):23–27. doi: 10.1097/ICU.0000000000001005
  5. Taban M, Behrens A, Newcomb RL, et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol. 2005;123(5):613–620. doi: 10.1001/archopht.123.5.613
  6. Fu L, Patel BC. Radial Keratotomy Correction. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; July 24, 2023.
  7. Voronin GV, Bubnova IA. Changes in biomechanical properties of the cornea after keratorefractive surgery. Russian Annals of Ophthalmology. 2019;135(4):108–112. EDN: XTUZLL doi: 10.17116/oftalma2019135041108
  8. Moshirfar M, Ostler EM, Smedley JG, et al. Age of cataract extraction in post-refractive surgery patients. J Cataract Refract Surg. 2014;40(5):841–842. doi: 10.1016/j.jcrs.2014.03.001
  9. Leite de Pinho Tavares R, de Almeida Ferreira G, Ghanem VC, Ghanem RC. IOL power calculation after radial keratotomy using the Haigis and Barrett True-K formulas. J Refract Surg. 2020;36(12): 832–837. doi: 10.3928/1081597X-20200930-02
  10. Curado SX, Hida WT, Vilar CMC, et al. Intraoperative aberrometry versus preoperative biometry for IOL power selection after radial keratotomy: a prospective study. J Refract Surg. 2019;35(10): 656–661. doi: 10.3928/1081597X-20190913-01
  11. Stakheev AA. Intraocular lens calculation for cataract after previous radial keratotomy. Ophthalmic Physiol Opt. 2002;22(4):289–295. doi: 10.1046/j.1475-1313.2002.00033.x
  12. Wang L, Spektor T, de Souza RG, Koch DD. Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery. J Cataract Refract Surg. 2019;45(10):1416–1421. doi: 10.1016/j.jcrs.2019.05.020
  13. Turnbull AMJ, Crawford GJ, Barrett GD. Methods for intraocular lens power calculation in cataract surgery after radial keratotomy. Ophthalmology. 2020;127(1):45–51. doi: 10.1016/j.ophtha.2019.08.019
  14. Alnolati-Almasri MA, Stebnev VS. Toric intraocular lenses: historical overview, patient selection, iol calculation, surgical techniques, clinical outcomes, and complications. Natsional’naya Assotsiatsiya Uchenykh. 2021;(36):16–28. (In Russ.) EDN: JBEJPT
  15. Colombo-Barboza GN, Rodrigues PF, Colombo-Barboza FDP, et al. Radial keratotomy: background and how to manage these patients nowadays. BMC Ophthalmol. 2024;24(1):9. doi: 10.1186/s12886-023-03261-0
  16. Parmley V, Ng J, Gee B, et al. Penetrating keratoplasty after radial keratotomy. A report of six patients. Ophthalmology. 1995;102(6):947–950. doi: 10.1016/s0161-6420(95)30929-3
  17. Mohankumar A, Mohan S. Toric Intraocular Lenses. In: StatPearls. [Internet]. Treasure Island (FL): StatPearls Publishing; July 3, 2023.
  18. Joshi VP, Chatterjee S, Basu S. Relationship of density, depth, and surface irregularity of superficial corneal opacification with visual acuity. Curr Eye Res. 2023;48(6):536–545. doi: 10.1080/02713683.2023.2173786
  19. Almulhim A, Magliyah MS, Alfawaz A, et al. Successful surgical management of post-penetrating or deep lamellar keratoplasty Acquired Corneal Sub-Epithelial Hypertrophy (ACSH): A case series. Int J Surg Case Rep. 2020;67:191–195. doi: 10.1016/j.ijscr.2020.01.054
  20. Raber IM, Eagle RC Jr. Peripheral hypertrophic subepithelial corneal degeneration. Cornea. 2022;41(2):183–191. doi: 10.1097/ICO.0000000000002716
  21. Trufanov SV, Rix IA, Ezugbaya M. Salzmann’s nodular degeneration. Ophthalmology. 2022;19(3):482–488. EDN: RKZRAE doi: 10.18008/1816/1816-5095-2022-2022-3-482-488
  22. Maust HA, Raber IM. Peripheral hypertrophic subepithelial corneal degeneration. Eye Contact Lens. 2003;29(4):266–269. doi: 10.1097/01.icl.0000087489.61955.82
  23. Gunzinger JM, Voulgari N, Petrovic A, et al. Peripheral hypertrophic subepithelial corneal degeneration: clinical aspects related to in vivo confocal microscopy and optical coherence tomography. Int Med Case Rep J. 2019;12:237–241. doi: 10.2147/IMCRJ.S208297
  24. Melles GR, Binder PS, Anderson JA. Variation in healing throughout the depth of long-term, unsutured, corneal wounds in human autopsy specimens and monkeys. Arch Ophthalmol. 1994;112(1):100–109. doi: 10.1001/archopht.1994.01090130110027
  25. Lagali N, Germundsson J, Fagerholm P. The role of Bowman’s layer in corneal regeneration after phototherapeutic keratectomy: a prospective study using in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2009;50(9):4192–4198. doi: 10.1167/iovs.09-3781
  26. Lee SJ, Sun HJ, Choi KS, Park SH. Intraocular lens exchange with removal of the optic only. J Cataract Refract Surg. 2009;35(3):514–518. doi: 10.1016/j.jcrs.2008.11.045
  27. Karamaounas N, Kourkoutas D, Prekates C. Surgical technique for small-incision intraocular lens exchange. J Cataract Refract Surg. 2009;35(7):1146–1149. doi: 10.1016/j.jcrs.2009.02.036
  28. Geggel HS. Simplified technique for acrylic intraocular lens explantation. Ophthalmic Surg Lasers. 2000;31(6):506–507.
  29. Kuo YW, Hou YC. Late intraocular lens exchange in dissatisfied patients with multifocal intraocular lens implantation. Taiwan J Ophthalmol. 2020;12(1):109–112. doi: 10.4103/tjo.tjo_55_20
  30. Lee MH, Webster DL. Intraocular lens exchange-removing the optic intact. Int J Ophthalmol. 2016;9(6):925–928. doi: 10.18240/ijo.2016.06.23
  31. Yu AK, Ng AS. Complications and clinical outcomes of intraocular lens exchange in patients with calcified hydrogel lenses. J Cataract Refract Surg. 2002;28(7):1217–1222. doi: 10.1016/s0886-3350(02)01357-3
  32. Stewart SA, McNeely RN, Chan WC, Moore JE. Visual and refractive outcomes following exchange of an opacified multifocal intraocular lens. Clin Ophthalmol. 2022;16:1883–1891. doi: 10.2147/OPTH.S3629

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Preoperative aspect of the patient’s left eye through the eyepieces of the Lumera 700 (Carl Zeiss) microscope. The radial scars are thin, almost invisible. Arrows indicate the area of subepithelial fibroplasia located in the upper-nasal quadrant of the corneal periphery

Download (122KB)
3. Fig. 2. Preoperative results of Scheimpflug keratopography obtained using the Pentacam (Oculus, Germany) device. Black arrow indicates the area of fibroplasia. Maps of the anterior surface of the cornea show a local increase in optical power (up to 50 diopters), thickening of the epithelium (elevation of the anterior surface is +43 µm), and local thickening of all layers of the cornea (up to 708 µm). Astigmatism of the anterior surface is 1.5 D

Download (469KB)
4. Fig. 5. Photographies of the left eye in 1 month after the IOL exchange surgery. Biomicroscopic examination shows that the IOL is in the center of the pupil, in the capsular bag

Download (161KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.