Comparative analysis of visual evoked potentials obtained using Tomey EP-1000 and Diopsys Nova in healthy participants

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: A visual evoked potential test is a common method of electrophysiological examination in ophthalmology. There are no published Russian scientific comparative studies of the results of the visual evoked potential test obtained using different devices.

AIM: The work aimed to perform a comparative analysis of visual evoked potentials obtained using Tomey EP-1000 and Diopsys Nova in healthy participants.

METHODS: The study included a total of 15 patients (30 eyes). The following parameters of visual evoked potentials were assessed: N75/N80 (Tomey EP-1000), P100, and N135 peak latency and P100 and N135 peak amplitude.

RESULTS: The means of the evaluated parameters obtained using Diopsys Nova were higher than those obtained using Tomey EP-1000, except for P100 peak amplitude. A Bland–Altman analysis showed that the mean difference between the P100 peak amplitude values recorded using Diopsys Nova and Tomey EP-1000 was −0.3 μV, and agreement limits of the evaluated parameters varied quite greatly (−5.66 to 4.99 μV). The P100 peak latency varied even greatly and the mean difference between measurements was 3.5 ms, with the quite wide limit of agreement (−4.29 to 11.35 ms).

CONCLUSION: The mean latencies of N70 (pattern 32), P100 (patterns 32 and 64), and P135 (pattern 32) peaks obtained using Diopsys Nova were statistically significantly higher than those recorded using Tomey EP-1000. The obtained results demonstrated that the used measurement methods were inconsistent. However, the performed study is greatly limited by the small sample size, which is a key for interpreting the results. Therefore, to demonstrate that the two methods are consistent, the sufficient sample size should be determined.

Full Text

Restricted Access

About the authors

Aleksandr D. Chuprov

Orenburg branch of The S. Fyodorov Eye Microsurgery Federal State Institution

Email: nauka@ofmntk.ru
ORCID iD: 0000-0001-7011-4220

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Orenburg

V. A. Trubnikov

Orenburg branch of The S. Fyodorov Eye Microsurgery Federal State Institution

Author for correspondence.
Email: v.trubnikov@mail.ofmntk.ru
ORCID iD: 0000-0002-9451-8622
SPIN-code: 2002-1951

MD, Cand. Sci. (Medicine)

Russian Federation, Orenburg

Natalia A. Zhediale

Clinic “Sozvezdie oftal’mika”

Email: natalex.nnov@mail.ru
ORCID iD: 0000-0002-4012-1056
Russian Federation, Nizhniy Novgorod

Olga V. Pligina

Orenburg branch of The S. Fyodorov Eye Microsurgery Federal State Institution

Email: pliginaolga@mail.ru
ORCID iD: 0000-0001-9956-3556

MD

Russian Federation, Orenburg

Aliya R. Subkhankulova

Orenburg branch of The S. Fyodorov Eye Microsurgery Federal State Institution

Email: aliya.subkhankulova@gmail.com
ORCID iD: 0000-0003-0913-6660

MD

Russian Federation, Orenburg

Ekaterina A. Pidodniy

Orenburg branch of The S. Fyodorov Eye Microsurgery Federal State Institution

Email: kati-makulova@yandex.ru
ORCID iD: 0000-0001-9945-3293
SPIN-code: 9230-8651

MD

Russian Federation, Orenburg

Alevtina D. Strekalovskaya

Orenburg State University

Email: mbt@mail.osu.ru
ORCID iD: 0000-0003-0850-2091
SPIN-code: 9374-2964

MD, Cand. Sci. (Biology), Assistant Professor

Russian Federation, Orenburg

References

  1. Kazajkin VN, Ponomarev VO, Lizunov AV, et al. The current role and prospects of electrophysiological research methods in ophthalmology. Literature review. Ophthalmology in Russia. 2020;17(4):669–675. doi: 10.18008/1816-5095-2020-4-669-675 EDN: ZMXCPU
  2. Kurysheva NI, Maslova EV. Electrophysiology in glaucoma diagnostics. National Journal of Glaucoma. 2017;16(1):102–113. EDN: YHDHYJ
  3. Rosolen SG, Kolomiets B, Varela O, Picaud S. Retinal electrophysiology for toxicology studies: applications and limits of ERG in animals and ex vivo recordings. Exp Toxicol Pathol. 2008;60(1):17–32. doi: 10.1016/j.etp.2007.11.012.
  4. Constable PA, Bach M, Frishman LJ, et al. International Society for Clinical Electrophysiology of Vision. ISCEV Standard for clinical electro-oculography (2017 update). Doc Ophthalmol. 2017;134(2):155. doi: 10.1007/s10633-017-9580-3
  5. Sheludchenko VM, Ronzina IA, Sheremet NL, et al. Capabilities of modern methods of electrophysiological analysis in diseases of visual analyzer. Russian annals of ophthalmology. 2013;129(5):4352. EDN: RBLYAL
  6. Mermeklieva EA. Reference values of pattern reversal visual evoked potentials in Bulgarian population. Eur J Ophthalmol. 2019;29(6):600–605. doi: 10.1177/1120672118802545
  7. Jeon J, Oh S, Kyung S. Assessment of visual disability using visual evoked potentials. BMC Ophthalmol. 2012;12:36. doi: 10.1186/1471-2415-12-36.
  8. Walsh P, Kane N, Butler S. The clinical role of evoked potentials. J Neurol Neurosurg Psychiatry. 2005;76(S2):ii16-ii22. doi: 10.1136/jnnp.2005.068130
  9. Odom JV, Bach M, Brigell M, et al. International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016;133(1):1–9. doi: 10.1007/s10633-016-9553-y
  10. Willeford KT, Ciuffreda KJ, Yadav NK, Ludlam DP. Objective assessment of the human visual attentional state. Doc Ophthalmol. 2012;126(1):29–44. doi: 10.1007/s10633-012-9357-7.
  11. Koshelev DI, Galautdinov MF, Vakhmyanina AA. The practice of the application of the flash visual evoked potentials for the visual system’s evaluation. Vestnik of the Orenburg State University. 2014;(12):181–187. EDN: TUOAYH
  12. Willeford KT, Ciuffreda KJ, Yadav NK. Effect of test duration on the visual-evoked potential (VEP) and alpha-wave responses. Doc Ophthalmol. 2013;126(2):105–115. doi: 10.1007/s10633-012-9363-9
  13. De Freitas Dotto P, Berezovsky A, Sacai PY, et al. Gender-based normative values for pattern-reversal and flash visually evoked potentials under binocular and monocular stimulation in healthy adults. Doc Ophthalmol. 2017;135(1):53–67. doi: 10.1007/s10633-017-9594-x
  14. Trevino RC, Majcher CE, Henry AM, et al. Visual evoked potential repeatability using the Diopsys NOVA LX fixed protocol in normal older adults. Clin Ophthalmol. 2018;12:1713–1729. doi: 10.2147/OPTH.S166211
  15. Altman DG, Bland JM. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bland–Altman plot for the results of P100 peak amplitude measurements: a — recorded using the Diopsys Nova (64×64 pattern) and Tomey EP-1000 (20 min); b — recorded using the Diopsys Nova (32×32 pattern) and Tomey EP-1000 (60 min). Mean (solid line) — average difference between the P100 peak amplitude measurements recorded using the Diopsys Nova and Tomey EP-1000 systems; ±1.96 SD (dashed lines) — limits of agreement; solid line — confidence interval for the average difference between measurements; dotted lines — interval for the limits of agreement.

Download (128KB)
3. Fig. 2. Bland–Altman plot for the results of P100 peak latency measurements: a — recorded using the Diopsys Nova (64×64 pattern) and Tomey EP-1000 (20 min); b — recorded using the Diopsys Nova (32×32 pattern) and Tomey EP-1000 (60 min). Mean (solid line) — average difference between the P100 peak latency measurements recorded using the Diopsys Nova and Tomey EP-1000 systems; ±1.96 SD (dashed lines) — limits of agreement; the solid line shows the confidence interval for the average difference between measurements; the dotted lines — the confidence interval for the limits of agreement.

Download (133KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.