Multifocal character of lesions in gunshot open globe injury type B in experiment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: An increase was noted in the number of gunshot eyeball injuries, which are accompanied by low functional outcomes. Reproduction and experimental study of this type of eye injury would help improving the functional and cosmetic treatment results in patients.

AIM: The aim of the study is to investigate gunshot open globe injury type B (penetrating wound without intraocular foreign body) on a standardized experimental model.

MATERIALS AND METHODS: A complete investigation of the standardized model of gunshot open globe injury type B (penetrating wound without intraocular foreign body) simulated on the ballistic test facility was carried out. The experiment was accomplished at the ophthalmology chair on 36 rabbits (71 eyes). The injury was inflicted in the projection of the ciliary body — zone II (Birmingham Eye Trauma Terminology). The examination in the control period included ophthalmologic (ophthalmoscopy, full field electroretinography, optical coherence tomography), biochemical (testing of vitreous fibronectin level), histological and radiological (magnetic resonance imaging, ultrasound examination) methods. Statistical non-parametric methods of data analysis were used.

RESULTS: The analysis of gunshot open globe injury type B model demonstrated the rate and multiple foci of abnormalities practically of all eyeball structures.

CONCLUSIONS: For the first time ever, the characteristics of gunshot open globe injury type B model were studied using a new complex of methods, their high reproducibility (91.5–100%) was demonstrated. Based on recorded abnormalities in all ocular structures, including proliferative vitreoretinopathy, the multifocal character of damage in this type of injury is validated.

Full Text

Restricted Access

About the authors

Aleksei A. Kol'bin

Kirov Military Medical Academy

Email: kolba81@yandex.ru
ORCID iD: 0000-0002-8305-3049
SPIN-code: 4718-5171
Russian Federation, Saint Petersburg

Aleksei N. Kulikov

Kirov Military Medical Academy

Email: alexey.kulikov@mail.ru
ORCID iD: 0000-0002-5274-6993
SPIN-code: 6440-7706

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Natalia N. Zybina

Nikiforov All-Russian Center Emergency and Radiation Medicine

Email: zybinan@inbox.ru
ORCID iD: 0000-0002-5422-2878
SPIN-code: 5164-2969

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

Milena Yu. Frolova

Nikiforov All-Russian Center Emergency and Radiation Medicine

Author for correspondence.
Email: frolusya@mail.ru
ORCID iD: 0000-0003-0917-6371
SPIN-code: 6313-1919

Cand. Sci. (Biologу)

Russian Federation, Saint Petersburg

Roman L. Troyanovsky

Kirov Military Medical Academy

Email: rltroy@rambler.ru
ORCID iD: 0000-0003-1353-9358
SPIN-code: 1900-1622

MD, Dr. Sci (Medicine), Professor

Russian Federation, Saint Petersburg

Vadim S. Chirskiy

Kirov Military Medical Academy

Email: v-chirsky@mail.ru
ORCID iD: 0000-0002-8336-1981
SPIN-code: 7295-3369

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Samokhvalov IM, Chuprina AP, Belskikh AN, et al. Military field surgery: textbook. Ed. by Samokhvalov I.M. Saint Petersburg: Kirov Military Medical Academy; 2021. 494 p. EDN: RPOGDB (In Russ.)
  2. Gundorova RA, Kvasha OI, Ter-Grigoryan MG. Clinic and treatment of eye injuries in extreme situations In: Proceedings of Scientific and Practical Conference; 1993 December 13–17; Suzdal. (In Russ.)
  3. Saidzhamolov KM, Gromakina EV, Makhmadzoda ShK, Karim-zade KhDzh. Functional outcomes of penetrating eye injuries in children. Russian Annals of Ophthalmology. 2022;138(4):15–18. (In Russ.) EDN: TUHSNZ doi: 10.17116/oftalma202213804115
  4. Kulikov AN. Ophthalmotraumatology: past, present, future. Bureau of the Department of Medical Sciences of the Russian Academy of Sciences. Minutes No. 13. Resolution N. 59 from 23.11.2022. Saint Petersburg; 2022. (In Russ.)
  5. Rana V, Patra VK, Bandopadhayay S, et al. Combat ocular trauma in counterinsurgency operations. Indian J Ophthalmol. 2023;71(12):3615–3619. doi: 10.4103/IJO.IJO_609_23
  6. Serdyuk VN, Ustimenko SB, Golovkin VV. Features of ophthalmosurgical care for patients with eye injuries sustained during combat operations in the ATO zone // Ukraine. Zdorov’ya natsii. 2016;4(1): 74–77. (In Russ.)
  7. Sobaci G, Mutlu FM, Bayer A, et al. Deadly weapon-related open-globe injuries: outcome assessment by the ocular trauma classification system. Am J Ophthalmol. 2000;129(1):47–53. doi: 10.1016/s0002-9394(99)00254-8
  8. Sosnovskii SV, Kulikov AN, Churashov SV. On the possible causes of poor functional outcomes of combined optical-reconstructive vitreoretinal surgery for severe open eye trauma. Modern Technologies in Ophthalmology. 2016;(1):205–208. (In Russ.) EDN: WEHAAL
  9. Badalov VI, Belyakov KV, Buinov LG, et al. Medicine of emergency situations. Organisation. Clinic. Diagnostics. Treatment. Rehabilitation. Innovation. Volume 1. Kazan: Kazan Federal University; 2015. 777 p. (In Russ.) EDN: ZNEZSJ
  10. Scott R. The injured eye. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):251–260. doi: 10.1098/rstb.2010.023411
  11. Soliman W, Tawfik MA, Abdelazeem K, Kedwany SM. “Iris shelf” Technique for management of posterior segment intraocular foreign bodies. Retina. 2012;41(10):2041–2047. doi: 10.1097/IAE.0000000000003154
  12. Volkov VV. Open eye trauma: a monograph. VMedA; 2016. 280 p. (In Russ.)
  13. Kanevskii BA, Churashov SV, Kulikov AN. A standardised experimental model of gunshot open eye trauma. Modern Technologies in Ophthalmology. 2018;(4):147–149. (In Russ.) EDN: XTFTGX
  14. Gregor Z, Ryan SJ. Combined posterior contusion and penetrating injury in the pig eye. III. A controlled treatment trial of vitrectomy. Br J Ophthalmol. 1983;67(5):282–285. doi: 10.1136/bjo.67.5.282
  15. Teplyashin AP. To the doctrine of histological changes in the retina after wounds. Experimental study. Kazan: Tipolitografiya VM. Klyuchnikov; 1893. 73 p. (In Russ.)
  16. Kolbin AA, Churashov SV, Kulikov AN, et al. Standardized experimental model of open — fire gunshot eye injury type B, C, D. Military Medical Journal. 2020;341(8):31–38. (In Russ.) EDN: UHPWIF doi: 10.17816/RMMJ82355
  17. Ogurtsov AN, Bliznyuk ON. Scientific research and scientific information: textbook. Kharkiv: NTU «KHPI»; 2011. 400 p. (In Russ.)
  18. Arevalo JF, Sanchez JG, Costa RA, et al. Optical coherence tomography characteristics of full-thickness traumatic macular holes. Eye (Lond). 2008;22(11):1436–1441. doi: 10.1038/sj.eye.6702975
  19. Echegaray JJ, Iyer P, Acon D, et al. Superficial and deep capillary plexus nonperfusion in nonaccidental injury on OCTA. J Vitreoretin Dis. 2023;7(1):79–82. doi: 10.1177/24741264221120643
  20. Nikolaenko EN, Kulikov AN, Volkov VV, Danilichev VF. Retinal and optic nerve functional activity after vitrectomy for vitreomacular traction syndrome. Ophthalmology Reports. 2019;12(3):13–20. EDN: PBNHMR doi: 10.17816/OV11040
  21. Pelletier J, Koyfman A, Long B. High risk and low prevalence diseases: Open globe injury. Am J Emerg Med. 2023;64:113–120. doi: 10.1016/j.ajem.2022.11.036
  22. Tan G, Huang X, Ye L, et al. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2016;12:2015–2020. doi: 10.2147/NDT.S110539
  23. Li CQ, Yao F, Yu CY, et al. Investigation of changes in activity and function in acute unilateral open globe injury-associated brain regions based on percent amplitude of fluctuation method: a resting-state functional MRI study. Acta Radiol. 2022;63(9):1223–1232. doi: 10.1177/02841851211034035
  24. Chaudhary R, Scott RAH, Wallace G, et al. Inflammatory and fibrogenic factors in proliferative vitreoretinopathy development. Transl Vis Sci Technol. 2020;9(3):23. doi: 10.1167/tvst.9.3.23
  25. Olsen TW, Asheim CG, Salomao DR, et al. Aerosolized, gas-phase, intravitreal methotrexate reduces proliferative vitreoretinopathy in a randomized trial in a porcine model. Ophthalmol Sci. 2023;3(3):100296. doi: 10.1016/j.xops.2023.100296
  26. Dong L, Han H, Huang X, et al. Idelalisib inhibits experimental proliferative vitroretinopathy. Lab Invest. 2022;102(12):1296–1303. doi: 10.1038/s41374-022-00822-7
  27. Naguib S, Bernardo-Colón A, Rex TS. Intravitreal injection worsens outcomes in a mouse model of indirect traumatic optic neuropathy from closed globe injury. Exp Eye Res. 2021;202:108369. doi: 10.1016/j.exer.2020.108369
  28. Patent RU No. 2764368/ 29.03.2021. Kulikov AN, Kol’bin AA, Churashov SV, et al. Method for modeling a perforated eyeball injury. Available from: https://yandex.ru/patents/doc/RU2764368C1_20220117
  29. Robson AG, Frishman LJ, Grigg J, et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol. 2022;144(3):165–177. doi: 10.1007/s10633-022-09872-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Kolbin_sup1
Download (167KB)
3. Kolbin_sup2
Download (839KB)
4. Kolbin_sup3
Download (700KB)
5. Kolbin_sup5
Download (123KB)
6. Fig. 1. Dynamics of proliferative vitreoretinopathy signs in the vitreous by ophthalmoscopy. ****p < 0.0001

Download (48KB)
7. Fig. 2. Proliferative vitreoretinopathy dynamics according to optical coherence tomography data. ****p < 0.0001

Download (48KB)
8. Fig. 3. Change in the amplitude of the “b” wave according to full-field electroretinography data

Download (55KB)
9. Fig. 4. Dynamics of changes according to B-scan ultrasound examination. ****p < 0.0001

Download (50KB)
10. Fig. 5. Dynamics of proliferative vitreoretinopathy signs in the vitreous according to magnetic resonance imaging data. *p < 0,05, ****p < 0.0001

Download (48KB)
11. Fig. 6. Changes in the fibronectin level in the vitreous of an experimental animal. *p < 0.05; **p < 0.01; ****p < 0.0001

Download (70KB)
12. Fig. 7. Images of histological sections under light microscopy at the due dates of the experiment (hematoxylin-eosin staining ×100, ×200) on the 1st (a, b), 3rd (c, d), 7th (e, f), 14th (g, h) and the 21st (i, j) day (explanations in the text)

Download (314KB)
13. Fig. 8. Dynamics of pathomorphological manifestations of proliferative vitreoretinopathy in the experiment according to light microscopy data. *p < 0.05; ****p < 0.0001

Download (47KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies