Changes in the Deformability and Resistance of Erythrocyte Membranes under the Action of Gamma-Aminobutyric Acid Derivatives in the Offspring of Rats with Experimental Preeclampsia

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

INTRODUCTION: Preeclampsia is a severe complication of pregnancy associated with the negative consequences for the mother and child. Such complications can be a reduction in the resistance of erythrocyte membranes to damaging agents and alteration of rheological properties of the blood in offspring. Promising compounds for the correction of these negative consequences of preeclampsia are gamma-aminobutyric acid (GABA) derivatives, which showed membrane–protective, antioxidant, and antihypoxic effects in previous studies.

AIM: To evaluate the effect of GABA derivatives Succicard® (4-phenylpiracetam and ethane-1,2-dicarboxylic acid, 2:1), Salifen® (4-amino-3-phenylbutanoic acid and 2-hydroxybenzoic acid, 2:1), and Phenibut® (aminophenylbutyric acid) on the deformability and resistance of erythrocyte membranes in 8- and 14-month-old offspring of rats with experimental preeclampsia (EP).

MATERIALS AND METHODS: The study involved offspring (male and female) of white non-inbred female rats with a normal pregnancy and EP that was modeled by replacement of drinking water with a 1.8% sodium chloride solution during gestation (1–21 days). For 30 days (from day 40 to day 70 of life), pup rats intragastrically received Succicard® (22 mg/kg), Salifen® (7.5 mg/kg), and Phenibut® (25 mg/kg), along with a comparison drug Pantogam® (calcium gopantenate) (50 mg/day) once a day. The offspring of the positive and negative control groups were injected with distilled water in a similar mode. In offspring aged 8 and 14 months, the resistance of erythrocyte membranes to the action of hydrochloric acid and their deformability were determined.

RESULTS: In 8-month-old male offspring of rats with EP, a shorter time of achievement of half the maximal amplitude of erythrogram was noted in acid hemolysis relative to the positive control group, and the erythrocyte elongation index was reduced. Relative to the negative control group, Succicard®, Salifen®, Phenibut®, and Pantogam® promoted the prolongation of hemolysis and the erythrocyte elongation index in 8-month-old male rats in the experimental groups. In 14-month-old male and female rats of different ages, no statistically significant differences were found between the groups.

CONCLUSION: Changes in the stiffness and strength of erythrocyte membranes were noted only in male offspring of rats with EP. Succicard®, Salifen®, Phenibut®, and Pantogam® produced membrane-protective effects on the erythrocytes of 8-month-old male rats of the experimental groups.

全文:

略语表

GABA — γ-氨基丁酸

EEI — 红细胞伸长指数

LP — 脂质过氧化

EP — 实验性子痫前期

绪论

目前,子痫前期影响世界上约5%的妊娠,是儿童和孕产妇发病的主要原因之一。大量研究结果表明,这种妊娠并发症有助于胎儿畸形、遗传病理的形成,增加了个体发育不同时期儿童心血管和神经系统疾病、代谢和血液疾病的风险[1, 2]。

母亲子痫前期全身内皮功能障碍导致发育中的胎儿氧和营养供应不足。慢性宫内缺氧伴氧化应激,导致患儿脏器结构功能状态异常[3]。

后代机体细胞的破坏和功能障碍的程度可能反映了红细胞对损伤因子作用抵抗力的下降,因为红细胞膜是原生质膜的通用模型[4]。一个重要的流变学参数表明组织和器官有足够的氧气供应是红细胞的变形能力。该指标降低,表明血液黏度增加,微循环恶化,增加了发生血流动力学障碍的可能性[5]。

在这方面,寻找具有膜保护作用和降低血液粘度的物质是有意义的。已有研究表明γ-氨基丁酸(GABA)衍生物具有内皮保护、抗氧化和抗缺氧作用,稳定细胞膜[6]。这使它们成为有希望的化合物,用于纠正子痫前期母亲的儿童的甲状腺后氧合并发症。

目的是评价γ-氨基丁酸衍生物Succicard®,Salifen®和Phenibut®对实验性子痫前期(EP)大鼠8和14月龄后代红细胞膜变形性和抵抗力的影响。

材料与方法

这项研究对84只雄性(n=42)和雌性(n=42)大鼠进行了研究(俄罗斯联邦国立统一企业《RAPPOLOVO》俄罗斯医学科学院实验动物苗圃,俄罗斯联邦列宁格勒地区拉波罗沃)。这些大鼠出生时没有发生妊娠并发症和实验性子痫前期。在妊娠期(1—21天)用1.8% NaCl溶液替换饮用水,建立实验性子痫前期模型[6]。

对雌性大鼠及其后代的护理和实验是按照国家标准P-33044-2014《良好实验室规范原则》、2010年9月22日《欧洲议会和欧盟理事会关于保护用于科学目的的动物的第2010/63/EU号指令》和1986年3月18日《用于实验和其他科学目的的脊椎动物保护欧洲公约》的要求和建议进行的。本研究获得伏尔加格勒地区独立伦理委员会批准(2017年12月25日第2044-2017号议定书)。

将大鼠的后代按每组7只的方式进行分组:

—第一组与第二组(阳性对照)分别为妊娠无并发症大鼠出生的雄性和雌性;每天在同一时间进行胃内注射,持续30天(从生命的第40天到70天),给予蒸馏水;

—第三组与第四组(阴性对照)分别为实验性子痫前期大鼠雌雄,以类似方式注射蒸馏水;

实验组包括实验性子痫前期大鼠的雄性和雌性:

—第五组(雄性)与第六组(雌性)给予22 mg/kg的Succicard®(4-苯基吡拉西坦和乙烷1,2-二羧酸,2:1);

—第七组(雄性)与第八组(雌性)给予7.5 mg/kg的Salifen®(4-氨基-3-苯基丁酸和2-羟基苯甲酸,2:1);

—第九组(雄性)与第十组(雌性) 给予25 mg/kg的Phenibut®(4-氨基-3-苯基丁酸)。

第5—10组的所有样本均由位于圣彼得堡的The Herzen State Pedagogical University提供。

第十一组(雄性)与第十二组(雌性)给予50 mg/天的Pantogam®(高泛酸钙)(糖浆100 mg/ml,PIQ-PHARMA PRO LLC,俄罗斯联邦)作为对照药物。

在8月龄时测定大鼠后代红细胞膜的变形能力和抵抗能力。为了确定这一参数,从舌下静脉采血,以比例为9:1的3.8%柠檬酸钠溶液(Vecton,俄罗斯联邦)稳定血液,然后轻轻混合,不形成泡沫。

用I.A. Tersky和I. Gitelzon(1961)方法研究了红细胞膜对盐酸的抗性。在生理盐水中洗涤三次后,将10 ml红细胞重悬于5 ml 0.9% NaCl溶液中(Esckom NPK,俄罗斯联邦)。将红细胞悬液(290µl)引入比色皿,并在内置220 LA磁力搅拌器(Npf Biola,俄罗斯联邦)的激光聚集分析仪的恒温控制细胞中放置1分钟。开机记录10秒后,在比色皿中加入10µl 0.1的正常盐酸溶液。达到红血图最大振幅一半的时间(T1/2溶血)是红细胞对盐酸作用抗性的指标。

在流动显微照相机中,通过红细胞变形指数(HBX)评估红细胞的变形能力。将红细胞装入0.9% NaCl溶液和0.1%牛血清白蛋白(Sigma-Aldrich,美国)后加压。计算剪应力(τ):

τ=6ηQWh2

其中:η—悬浮液的粘度(20℃时约为1.0mPa×s);Q—体积速度;W—流道的宽度;h—流道的高度,等于垫圈的厚度。

生成的图像在Adobe Photoshop CC(2021,试用版)中进行记录和分析,固定拉长的红细胞的长度和宽度。根据所得数据,计算红细胞伸长指数(EEI):

EEI=L-WL+W

其中:L—变形单元的长度;W—变形单元的宽度。

在14个月大时,对阳性(n = 6和n = 6) 和阴性(n=7和n=6)对照组、实验组的雄性和雌性大鼠同样进行上述测试:5(n = 6),6 (n = 7),7(n = 7),8(n = 6),9(n = 6),10(n = 7),11(n = 6),12(n = 6)。

实验研究结果的统计处理在应用Statistica12.5软件包(许可证号133-190-095,Stat Soft Inc.,美国)中进行。对于成对和多样本比较,分别使用学生 t 检验和Newman-Keils标准。p<0.05为差异有统计学意义。

结果

在8个月大的实验性子痫前期大鼠的雄性中,红细胞膜对盐酸作用的抵抗力下降被观察到。红细胞图最大振幅达到一半的时间比阳性对照组短17.7%(p = 0.0196)。14月龄时,阴性对照组大鼠子代T1/2溶血有下降趋势。

在实验组雄性大鼠8个月时,Succicard®、Salifen®、Phenibut®和Pantogam® 使其红血图达到一半最大振幅的持续时间增加了24.3%(p = 0.0006);25.9%(p = 0.0003);与阴性对照组相比,两组分别为14.7%(p=0.0281)和20.3%(p = 0.0041)。14月龄的雌雄大鼠注射γ-氨基丁酸衍生物后,对照组实验性子痫前期大鼠后代各项指标均无差异(图 1)。

 

图 1γ-氨基丁酸衍生物对实验性子痫前期(M ± m)8-(A)和14月龄(B)的子代红细胞图(T1/2溶血)达到最大值一半持续时间的影响。注:* 与阳性对照组的数据相比,p < 0.05(学生t检验);#与阴性对照组的数据相比,p < 0.05(Newman-Keuls检验)。

 

妊娠合并实验性子痫前期出生的8月龄雄性大鼠的红细胞伸长指数比健康雌性大鼠的后代低20.0%(p=0.0034), 14月龄阳性对照组、阴性对照组和实验组之间无显著差异。

Succicard®,Salifen®,Phenibut®和Pantogam®使实验组8月龄雄性大鼠红细胞膜变形能力增强,其红细胞膜伸长指数为17.9% (p = 0.0013);15.1%(p = 0.0016);22.2%(p = 0.0002)和17.6%(p = 0.0009)相对于阴性对照组的研究指标分别较高。到14个月时,早期使用这些γ-氨基丁酸衍生物治疗的效果被消除,两组之间没有发现统计学上的显著差异(图 2)。

 

图 2γ-氨基丁酸衍生物对实验性子痫前期大鼠8(A)和14月龄子代(B)红细胞伸长指数值的影响(M ± m)。 注:* 与阳性对照组的数据相比,p < 0.05(学生t检验);#与阴性对照组的数据相比,p < 0.05(Newman-Keuls检验)。

 

讨论

结果显示,8个月时阴性对照组雄性大鼠红细胞膜对损伤剂作用的抵抗力下降,细胞膜变形能力下降。这表现在与健康大鼠的后代相比,达到最大红细胞图谱振幅值一半的时间很短,红细胞的伸长指数降低。

这可能是由于子痫前期母鼠子宫胎盘循环的破坏和胎儿供氧不足所致。有研究表明,暴露于宫内缺氧的大鼠在出生后的最初几天内,红细胞生成过程会增加,然而,导致子痫前期大鼠子代红细胞系统[7]功能储备耗尽,组织灌注和氧合不足。缺氧介导细胞膜氧化损伤和红细胞蛋白的病理改变[8]。氧化产物在红细胞膜上的积累与红细胞膜流动性和变形性的改变有关[9]。因此,红细胞膜形成更加坚硬脆弱的结构,膜电位和离子渗透性发生变化,导致血管内溶血。我们在前期研究中发现,实验性子痫前期大鼠的子代血浆中脂质过氧化产物丙二醛水平升高,以及超氧化物歧化酶和过氧化氢酶活性的降低,与类似指标相比,大鼠生理性发生妊娠[10]。

Succicard®,Salifen®,Phenibut®和Pantogam®有助于增加8个月大的雄性红细胞膜的变形能力和它们对盐酸的抵抗力。显然,这主要是由于它们能够限制脂质过氧化过程并增加抗氧化系统中酶的活性。此外,γ-氨基丁酸衍生物对微循环的正化作用、抗缺氧活性和膜保护作用均为已知[11]。

同时,不同年龄、不同组的雌性大鼠各项指标间差异均无统计学意义,这可能与发情周期中性激素的影响有关。内源性雌激素对红细胞的变形能力有保护作用[12, 13]。J. Mladenovic等人(2014)的一项研究表明,雌二醇通过与谷胱甘肽和维生素E协同作用,能够限制对红细胞的氧化损伤[14]。

结论

在8个月大时,与健康大鼠的后代相比,患有实验性子痫前期大鼠的雄性后代表现出僵硬度增加和红细胞膜强度下降。γ-氨基丁酸衍生物Succicard®,Salifen®,Phenibut®和比较药物Pantogam®对实验组8月大的雄性红细胞具有膜保护作用。

ADDITIONAL INFORMATION

Funding. This study was not supported by any external sources of funding.

Conflict of interests. The authors declare no conflicts of interests.

Contribution of the authors: E. A. Muzyko — implementation of the main stages of the experiments, analysis and interpretation of the data, writing the article; L. V. Naumenko — implementation of the main stages of the experiments, analysis and interpretation of the data; V. N. Perfilova — analysis and interpretation of the data, revision of the crucially important conceptual content, approval of the manuscript for publication; V. E. Zavadskaya, S. V. Varlamova — implementation of the main stages of the experiments; I. N. Tyurenkov — development of the concept and design of the study, revision of the crucially important conceptual content, final approval of the manuscript for publication; O. S. Vasilyeva — analysis and interpretation of the data, revision of the crucial conceptual content. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Финансирование. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов: Музыко Е. А. — проведение основных этапов эксперимента, анализ и интерпретация данных, написание статьи; Науменко Л. В. — проведение основных этапов эксперимента, анализ и интерпретация данных; Перфилова В. Н. — анализ и интерпретация данных, проверка критически важного интеллектуального содержания, утверждение для публикации рукописи; Завадская В. Е. — проведение основных этапов эксперимента; Варламова С. В. — проведение основных этапов эксперимента; Тюренков И. Н. — разработка концепции и дизайна, проверка критически важного интеллектуального содержания, окончательное утверждение для публикации рукописи; Васильева О. С. — анализ и интерпретация данных, проверка критически важного интеллектуального содержания. Все авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией).

×

作者简介

Elena A. Muzyko

Volgograd State Medical University

编辑信件的主要联系方式.
Email: muzyko.elena@mail.ru
ORCID iD: 0000-0003-0535-9787
SPIN 代码: 9939-9414

MD, Cand. Sci. (Med.), assistant at the department of theoretical biochemistry with a course in clinical biochemistry

俄罗斯联邦, Volgograd

Lyudmila V. Naumenko

Volgograd State Medical University

Email: milanaumenko@mail.ru
ORCID iD: 0000-0002-2119-4233
SPIN 代码: 8537-0991

MD, Associate Professor, doctor of science (Medicine), assistant professor, professor of the department of pharmacology and bioinformatics

俄罗斯联邦, Volgograd

Valentina N. Perfilova

Volgograd State Medical University; Scientific Center for Innovative Medicines

Email: vnperfilova@mail.ru
ORCID iD: 0000-0002-2457-8486
SPIN 代码: 3291-9904

doctor of science (Biology), professor, professor of the department of pharmacology and pharmacy

俄罗斯联邦, Volgograd; Volgograd

Valeriya E. Zavadskaya

Volgograd State Medical University

Email: valzavadskaya@yandex.ru
ORCID iD: 0000-0003-0772-8371

student of 4 course of the Pharmacy Faculty

俄罗斯联邦, Volgograd

Sof’ya V. Varlamova

Volgograd State Medical University

Email: varlamovasophia@yandex.ru
ORCID iD: 0000-0002-4242-9863

student of 4 course of the Pharmacy Faculty

俄罗斯联邦, Volgograd

Ivan N. Tyurenkov

Volgograd State Medical University

Email: fibfuv@mail.ru
ORCID iD: 0000-0001-7574-3923
SPIN 代码: 6195-6378

HFRHE RF, HSW RF, corresponding member of RAS, MD, doctor of science (Medicine), professor, head of the department of pharmacology and pharmacy of Institute of Continuing Medical and Pharmaceutical Education

俄罗斯联邦, Volgograd

Ol’ga S. Vasil'yeva

The Herzen State Pedagogical University of Russia

Email: kohrgpu@yandex.ru
ORCID iD: 0000-0002-7779-8861
SPIN 代码: 9820-9881

candidate of science (Chemistry), senior researcher of Problem Laboratory of Nitro Compounds, Department of Organic Chemistry

俄罗斯联邦, Saint-Petersburg

参考

  1. Lu HQ, Hu R. Lasting Effects of Intrauterine Exposure to Preeclampsia on Offspring and the Underlying Mechanism. American Journal of Perinatology Reports. 2019;9(3):e275-91. doi: 10.1055/s-0039-1695004
  2. Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. American Journal of Physiology. Renal Physiology. 2020;318(6):F1315–26. doi: 10.1152/ajprenal.00071.2020
  3. Silvestro S, Calcaterra V, Pelizzo G, et al. Prenatal Hypoxia and Placental Oxidative Stress: Insights from Animal Models to Clinical Evidences. Antioxidants. 2020;9(5):414. doi: 10.3390/antiox9050414
  4. Oborin VA, Ashikhmina TYa. Experimental substantiation of the possibility of using red blood cells as a model for studying the membrane damaging effect of nanoparticles. Theoretical and Applied Ecology. 2020;(3):176–81. (In Russ). doi: 10.25750/1995-4301-2020-3-176-181
  5. Yakovlev DS, Naumenko LV, Sultanova KT, et al. Hemorheological properties of the 5-HT2A-Antagonist of the 2-methoxyphenyl-imidazobenzimidazole derivative of the RU-31 compound and cyproheptadine, in comparison with penthoxyphylline. Pharmacy & Pharmacology. 2020;8(5):345–53. (In Russ). doi: 10.19163/2307-9266-2020-8-5-345-353
  6. Tyurenkov IN, Popova TA, Perfilova VN, et al. Effect of RSPU-189 Compound and Sulodexide on Placental Mitochondrial Respiration in Female Rats with Experimental Preeclampsia. SOJ Gynecology, Obstetrics and Women's Health. 2016;2(2):7. doi: 10.15226/2381-2915/2/2/00112
  7. Nazarov SB, Ivanova AS, Novikov AA. The role of nitric oxide in regulation of the erythrocyte system state in rat offspring with chronic disturbance of uteroplacental blood circulation. Experimental and Clinical Pharmacology. 2012;75(5):21–3. (In Russ). doi: 10.30906/0869-2092-2012-75-5-21-23
  8. Revin VV, Gromova NV, Revina ES, et al. Effects of Polyphenol Compounds and Nitrogen Oxide Donors on Lipid Oxidation, Membrane–Skeletal Proteins, and Erythrocyte Structure Under Hypoxia. BioMed Research International. 2019;2019: 6758017. doi: 10.1155/2019/6758017
  9. Diederich L, Suvorava T, Sansone R, et al. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability. Frontiers in Physiology. 2018;9:332. doi: 10.3389/fphys.2018.00332
  10. Muzyko EA, Kustova MV, Suvorin KV, et al. Change of the oxidant and antioxidant status in the offspring from rats with experimental preeclampsia under the effect of GABA derivatives. Journal of Volgograd State Medical University. 2020;(1):98–101. (In Russ). doi: 10.19163/1994-9480-2020-1(73)-98-101
  11. Tyurenkov IN, Perfilova VN. Kardiovaskulyarnyye i kardioprotektornyye svoystva GAMK i eye analogov. Volgograd: Izdatel’stvo VolGMU; 2008. (In Russ).
  12. Doucet DR, Bonitz RP, Feinman R, et al. Estrogenic hormone modulation abrogates changes in red blood cell deformability and neutrophil activation in trauma hemorrhagic shock. The Journal of Trauma. 2010;68(1):35–41. doi: 10.1097/TA.0b013e3181bbbddb
  13. Farber PL, Freitas T, Saldanha C, et al. Beta-estradiol and ethinylestradiol enhance RBC deformability dependent on their blood concentration. Clinical Hemorheology and Microcirculation. 2018;70(3):339–45. doi: 10.3233/CH-180392
  14. Mladenović J, Ognjanović B, Dordević N, et al. Protective effects of oestradiol against cadmium-induced changes in blood parameters and oxidative damage in rats. Archives of Industrial Hygiene and Toxicology. 2014;65(1):37–46. doi: 10.2478/10004-1254-65-2014-2405

补充文件

附件文件
动作
1. JATS XML
2. 图 1γ-氨基丁酸衍生物对实验性子痫前期(M ± m)8-(A)和14月龄(B)的子代红细胞图(T1/2溶血)达到最大值一半持续时间的影响。注:* 与阳性对照组的数据相比,p < 0.05(学生t检验);#与阴性对照组的数据相比,p < 0.05(Newman-Keuls检验)。

下载 (46KB)
3. 图 2γ-氨基丁酸衍生物对实验性子痫前期大鼠8(A)和14月龄子代(B)红细胞伸长指数值的影响(M ± m)。 注:* 与阳性对照组的数据相比,p < 0.05(学生t检验);#与阴性对照组的数据相比,p < 0.05(Newman-Keuls检验)。

下载 (51KB)

版权所有 © ООО "Эко-Вектор", 2022


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



##common.cookie##