Gait biometrics in children with cerebral palsy before and after robotic mechanotherapy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The improvement in existing methods and the development of new principles for treating children with cerebral palsy necessitates a quantitative assessment of the parameters of motor activity. However, because of the explicit and complex abnormalities in motor skills in patients with severe forms of cerebral palsy, an evaluation of their locomotor function dynamics using instrumental diagnostic methods remains a serious problem.

Aim. This work aimed to study the walking function in patients with cerebral palsy before and after motor rehabilitation using a biomechanical method with biometric sensors.

Materials and methods. We examined 14 patients with cerebral palsy aged 8 to 13 years with III level of restriction of motor activity according to the gross motor function classification system (GMFCS). All patients underwent rehabilitation in the Lokomat robotic simulator for three weeks. The course consisted of 15 sessions of 45 min each. The temporal and dynamic parameters of walking were studied in 14 patients with cerebral palsy before and after a course of locomotor training. The biometry of the step cycle was studied using the STEDIS hardware-software complex, including the Neurosens set of wireless biometric sensors. The temporal characteristics of the step cycle and the force interaction of the lower extremities with the supporting surface during walking were recorded. For comparison, we conducted a biomechanical examination of 18 healthy children of the same age who did not have signs of orthopedic disorders.

Results. Although after a course of mechanotherapy, the indices of the support phases in biometry in children with cerebral palsy did not reach the level of healthy individuals, a physiological tendency to roll foot was observed in the phase of pushing and accelerating the foot. Active braking of the lower limb increased. The studied time parameters showed a relative improvement in the step structure because of the emerging tendency to normalize the ratio of the periods of the double support of the contralateral lower extremities.

Conclusion. Robotic mechanotherapy helps to change the biomechanical pattern of walking of a child with a severe degree of cerebral palsy. An instrumental analysis of walking using wireless biometric sensors allows you to evaluate the results and effectiveness of rehabilitation measures in patients with severe motor impairment objectively.

Full Text

Restricted Access

About the authors

Igor E. Nikityuk

The Turner Scientific Research Institute for Children’s Orthopedics

Author for correspondence.
Email: femtotech@mail.ru
ORCID iD: 0000-0001-5546-2729

MD, PhD, Leading Researcher of the Laboratory of Physiological and Biomechanical Research

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Galina A. Ikoeva

North-Western State Medical University named after I.I. Mechnikov; The Turner Scientific Research Institute for Children’s Orthopedics

Email: ikoeva@inbox.ru
ORCID iD: 0000-0001-9186-5568
SPIN-code: 6523-9900

Associate Professor of the Department of Pediatric Neurology and Neurosurgery; MD, PhD, Head of the Department of Motor Rehabilitation and Leading Researcher 

Russian Federation, 41, Kirochnaya street, Saint-Petersburg, 191015; 64-68, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Elizaveta L. Kononova

The Turner Scientific Research Institute for Children’s Orthopedics

Email: Yelisaveta@yandex.ru
ORCID iD: 0000-0001-7624-013X

MD, PhD, Head of the Laboratory of Physiological and Biomechanical Research

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Irina Yu. Solokhina

The Turner Scientific Research Institute for Children’s Orthopedics

Email: Solokhina.irina@mail.ru
ORCID iD: 0000-0003-2628-8148
SPIN-code: 4830-4477

MD, researcher, neurologist

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

References

  1. van Vulpen LF, de Groot S, Rameckers E, et al. Improved walking capacity and muscle strength after functional power-training in young children with cerebral palsy. Neurorehabil Neural Repair. 2017;31(9):827-841. https://doi.org/10.1177/1545968317723750.
  2. Икоева Г.А., Никитюк И.Е., Кивоенко О.И., и др. Клинико-неврологическая и нейрофизиологическая оценка эффективности двигательной реабилитации у детей с церебральным параличом при использовании роботизированной механотерапии и чрескожной электрической стимуляции спинного мозга // Ортопедия, травматология и восстановительная хирургия детского возраста. – 2016. – Т. 4. – № 4. – С. 47–55. [Ikoeva GA, Nikityuk IE, Kivoenko OI, et al. Clinical, neurological, and neurophysiological evaluation of the efficiency of motor rehabilitation in children with cerebral palsy using robotic mechanotherapy and transcutaneous electrical stimulation of the spinal cord. Pediatric traumatology, orthopaedics and reconstructive surgery. 2016;4(4):47-55. (In Russ.)]. https://doi.org/10.17816/PTORS4447-55.
  3. Smania N, Bonetti P, Gandolfi M, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90(2):137-149. https://doi.org/10.1097/PHM.0b013e318201741e.
  4. Esser P, Dawes H, Collett J, et al. Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait Posture. 2011;34(4):558-560. https://doi.org/10.1016/j.gaitpost.2011.06.018.
  5. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel). 2014;14(2):3362-3394. https://doi.org/10.3390/s140203362.
  6. Qiu S, Wang Z, Zhao H, Hu H. Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Trans Instrum Meas. 2016;65(4):939-950. https://doi.org/10.1109/tim.2015.2504078.
  7. Carcreff L, Gerber CN, Paraschiv-Ionescu A, et al. What is the best configuration of wearable sensors to measure spatiotemporal gait parameters in children with cerebral palsy? Sensors (Basel). 2018;18(2):394. https://doi.org/10.3390/s18020394.
  8. Zhou J, Butler EE, Rose J. Neurologic correlates of gait abnormalities in cerebral palsy: implications for treatment. Front Hum Neurosci. 2017;11. doi: 10.3389/fnhum.2017.00103.
  9. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 2008;39(4):214-223. https://doi.org/10.1111/j.1469-8749.1997.tb07414.x.
  10. Скворцов Д.В. Диагностика двигательной патологии инструментальными методами: анализ походки, стабилометрия. – М.: Т.М. Андреева, 2007. – 640 с. [Skvortsov DV. Diagnostika dvigatel’noy patologii instrumental’nymi metodami: analiz pokhodki, stabilometriya. Moscow: T.M. Andreeva; 2007. 640 p. (In Russ.)]
  11. Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016;1(12):448-460. https://doi.org/10.1302/2058-5241.1.000052.
  12. Моисеев С.А., Пухов А.М., Иванов С.М., и др. Влияние двухуровневой неинвазивной стимуляции ЦНС на регуляцию локомоций человека в условиях разной степени опорной афферентации // Журнал медико-биологических исследований. – 2018. – Т. 6. – № 4. – С. 367–375. [Moiseev SA, Pukhov AM, Ivanov SM, et al. The effect of two-level non-invasive cns stimulation on the regulation of human locomotion at various values of support afferentation. Journal of Medical and Biological Research. 2018;6(4):367-375. (In Russ.)]. https://doi.org/10.17238/ issn2542-1298.2018.6.4.367.
  13. Скворцов Д.В., Кауркин С.Н., Ахпашев А.А., и др. Анализ ходьбы и функции коленного сустава до и после резекции мениска // Травматология и ортопедия России. – 2018. – Т. 24. – № 1. – С. 65–73. [Skvortsov DV, Kaurkin SN, Akhpashev AA, et al. Analysis of gait and knee function prior to and after meniscus resection. Traumatology and orthopedics of Russia. 2018;24(1):65-73. (In Russ.)]. https://doi.org/10.21823/2311-2905-2018-24-1-65-73.
  14. Avvenuti M, Carbonaro N, Cimino M, et al. Smart shoe-assisted evaluation of using a single trunk/pocket-worn accelerometer to detect gait phases. Sensors. 2018;18(11):3811. https://doi.org/10.3390/s18113811.
  15. Sinclair J, Hobbs SJ, Protheroe L, et al. Determination of gait events using an externally mounted shank accelerometer. J Appl Biomech. 2013;29(1):118-122. https://doi.org/10.1123/jab.29.1.118.
  16. Ахпашев А.А., Загородний Н.В., Канаев А.С., и др. Функция коленного сустава во время ходьбы у больных с разрывом передней крестообразной связки коленного сустава до и после оперативного лечения // Травматология и ортопедия России. – 2016. – Т. 22. – № 2. – С. 15–24. [Akhpashev AA, Zagorodniy NV, Kanaev AS, et al. Knee joint gait function in patients with ACL rupture before and after the surgery. Traumatology and orthopedics of Russia. 2016;22(2):15-24. (In Russ.)]
  17. Петрушанская К.А., Витензон А.С. Исследование структуры ходьбы больных детским церебральным параличом // Российский журнал биомеханики. – 2005. – Т. 9. – № 3. – С. 56–69. [Petrushanskaya KA, Vitenson AS. Investigation of gait structure in patients with infantile cerebral palsy. Rossiyskiy zhurnal biomekhaniki. 2005;9(3):56-69. (In Russ.)]
  18. Титаренко Н.Ю., Титаренко К.Е., Левченкова В.Д., и др. Количественная оценка нарушений двигательных функций у больных детским церебральным параличом методом видеоанализа движений с использованием двухмерной биомеханической модели // Российский педиатрический журнал. – 2014. – Т. 17. – № 5. – С. 20–26. [Тitarenko NY, Тitarenko KE, Levchenkova VD, et al. Quantitative evaluation of motor functions disorders in cerebral palsy patients by means of videoanalysis of movements with the use a two-dimensional biomechanical model. Russian journal of pediatrics. 2014;17(5):20-26. (In Russ.)]
  19. Dallmeijer AJ, Baker R, Dodd KJ, Taylor NF. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy. Gait Posture. 2011;33(3):326-332. https://doi.org/10.1016/j.gaitpost.2010.10.092.
  20. Hoffman RM, Corr BB, Stuberg WA, et al. Changes in lower extremity strength may be related to the walking speed improvements in children with cerebral palsy after gait training. Res Dev Disabil. 2018;73:14-20. https://doi.org/10.1016/j.ridd.2017.12.005.
  21. Dallmeijer AJ, Rameckers EA, Houdijk H, et al. Isometric muscle strength and mobility capacity in children with cerebral palsy. Disabil Rehabil. 2015;39(2):135-142. https://doi.org/10.3109/09638288.2015.1095950.
  22. Zhou JY, Lowe E, Cahill-Rowley K, et al. Influence of impaired selective motor control on gait in children with cerebral palsy. J Child Orthop. 2019;13(1):73-81. https://doi.org/10.1302/1863-2548.13.180013.
  23. Fowler EG, Knutson LM, DeMuth SK, et al. Pediatric endurance and limb strengthening (pedals) for children with cerebral palsy using stationary cycling: a randomized controlled trial. Phys Ther. 2010;90(3):367-381. https://doi.org/10.2522/ptj.20080364.
  24. Солопова И.А., Мошонкина Т.Р., Умнов В.В., и др. Нейрореабилитация пациентов с детским церебральным параличом // Физиология человека. – 2015. – Т. 41. – № 4. – С. 123–131. [Solopova IA, Moshonkina ТR, Umnov VV, et al. Neurorehabilitation of patients with cerebral palsy. Fiziol Cheloveka. 2015;41(4):123-131. (In Russ.)]. https://doi.org/10.7868/S0131164615040153.
  25. Donker SF, Ledebt A, Roerdink M, et al. Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children. Exp Brain Res. 2007;184(3):363-370. https://doi.org/10.1007/s00221-007-1105-y.
  26. Никитюк И.Е., Икоева Г.А., Кивоенко О.И. Система управления вертикальным балансом у детей с церебральным параличом более синхронизирована по сравнению со здоровыми детьми // Ортопедия, травматология и восстановительная хирургия детского возраста. – 2017. – Т. 5. – № 3. – С. 49–57. [Nikityuk IE, Ikoeva GA, Kivoenko OI. The vertical balance management system is more synchronized in children with cerebral paralysis than in healthy children. Pediatric traumatology, orthopaedics and reconstructive surgery. 2017;5(3):49-57. (In Russ.)]. https://doi.org/10.17816/PTORS5349-57.
  27. Hilderley AJ, Fehlings D, Lee GW, Wright FV. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two groups randomized controlled cross-over trial. SpringerPlus. 2016;5(1). https://doi.org/10.1186/s40064-016-3535-0.
  28. Grigoriu AI, Lempereur M, Bouvier S, et al. Characteristics of newly acquired gait in toddlers with unilateral cerebral palsy: Implications for early rehabilitation. Ann Phys Rehabil Med. 2019. https://doi.org/10.1016/ j.rehab.2019.10.005.
  29. Макарова М.Р., Лядов К.В., Турова Е.А., Кочетков А.В. Возможности современной механотерапии в коррекции двигательных нарушений неврологических больных // Вестник восстановительной медицины. – 2014. – № 1. – С. 54–62. [Makarova MR, Liadov KV, Turova EA, Kochetkov AV. Possibilities of modern mechanical therapy in the correction of motor disorders of neurological patients. Vestnik vosstanovitel’noy meditsiny. 2014;(1):54-62. (In Russ.)]
  30. Икоева Г.А., Кивоенко О.И., Мошонкина Т.Р., и др. Сравнительный анализ эффективности двигательной реабилитации детей с церебральным параличом с использованием роботизированной механотерапии и чрескожной электрической стимуляции спинного мозга // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 2-2. – С. 200–203. [Ikoeva GA, Kivoenko OI, Moshonkina TR, et al. Comparative analysis of the efficiency of the motor rehabilitation in children with cerebral palsy using robotic mechanotherapy and transcutaneous electrical stimulation of the spinal cord. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2016;(2-2):200-203. (In Russ.)]
  31. Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496-502. https://doi.org/10.1016/j.ejpn.2010.01.002.
  32. Aurich-Schuler T, Grob F, van Hedel HJA, Labruyere R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil. 2017;14(1):76. https://doi.org/10.1186/s12984-017-0287-1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Load changes in the lower tibial anthropometric point: а — in a healthy child; b — in the ICP patient B, 13 years old, before mechanotherapy; c — in the same patient after mechanotherapy (the values of accelerations 1, 3, 4 and 5 increased). 1 — acceleration in the support-contact phase, 2 — acceleration in the foot-rolling phase, 3 — acceleration in the foot-pushing phase, 4 — acceleration in the foot-acceleration phase, and 5 — acceleration in the foot-braking phase

Download (244KB)

Copyright (c) 2020 Nikityuk I.E., Ikoeva G.A., Kononova E.L., Solokhina I.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies