The use of guide templates in the surgical treatment of preschool children with congenital scoliosis of thoracic and lumbar localization

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The use of transpedicular screws as support elements from the standpoint of biomechanics is preferable as compared to that of laminar fixation, albeit the former carries the risk of various complications (such as malposition screws, damage to the Dura mater, spinal cord, and major blood vessels) caused by structural changes in the vertebrae under the background of their defects, with small size of roots arcs vertebrae in young children. Thus, the issue of ensuring safe and correct installation of transpedicular screws in the surgical treatment of children with congenital scoliosis remains relevant.

Aim. We aimed to evaluate the correctness of the position of the transpedicular screws installed in the vertebral bodies in preschool children with congenital scoliosis of thoracic and lumbar localization using guide templates (SHN).

Materials and methods. We conducted a prospective analysis of the outcomes of surgical treatment of 30 patients with congenital scoliosis against the background of impaired formation of the vertebrae of the thoracic and lumbar spine. The patients included 12 boys and 18 girls of age: 1 year 8 months to 6 years 5 months (average: 3 years 4 months). Based on the computed tomography of the spine, performed postoperatively, the correctness of the position of the installed elements of the corrective multi-support metal structure was evaluated. The correctness of the position of the installed transpedicular support elements was evaluated based on the scale described by S.D. Gertzbein and co-authors (1990).

Results. The total number of implanted transpedicular screws sets was 96 (100% of the planned transpedicular screws set), and 48 SHN were used for transpedicular screws installation. The correct position of installed screws by degree of displacement revealed Grade 0 — 93.7% (90 screws), Grade I — 4.2% (4 screws), Grade II — 2.1% (2 screws), Grade III — 0%. The number of screws with a Grade 0 + Grade I offset was 94 (97.9%).

Conclusion. The results obtained with the use of SHN among preschool children with congenital scoliosis of thoracic and lumbar localization revealed high accuracy and correctness of transpedicular screws installation (93.7%) with the use of this type of navigation in clinical practice. The use of SHN for installing transpedicular screws in the surgical treatment of congenital spinal deformities in young patients allows for the selection of the optimal size and correct position of the transpedicular support elements in the vertebrae to be instrumented.

Full Text

Restricted Access

About the authors

Dmitry N. Kokushin

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: partgerm@yandex.ru
ORCID iD: 0000-0002-6112-3309

MD, PhD, Senior Research Associate of the Department of Pathology of the Spine and Neurosurgery

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.ru
ORCID iD: 0000-0003-4235-5048

MD, PhD, D.Sc., Professor, Corresponding Member of RAS, Deputy Director for Research and Academic Affairs, Head of the Department of Spinal Pathology and Neurosurgery

Russian Federation, Saint Petersburg

Alexey G. Baindurashvili

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: turner01@mail.ru
ORCID iD: 0000-0001-8123-6944

MD, PhD, D.Sc., Professor, Member Of RAS, Honored Doctor of the Russian Federation, Director

Russian Federation, Saint Petersburg

Alla V. Ovechkina

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: turner01@mail.ru
ORCID iD: 0000-0002-3172-0065

MD, PhD, Associate Professor, Academic Secretary

Russian Federation, Saint Petersburg

Nikita O. Khusainov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: nikita_husainov@mail.ru
ORCID iD: 0000-0003-3036-3796

MD, PhD, Research Associate of the Department of Pathology of the Spine and Neurosurgery

Russian Federation, Saint Petersburg

Mahmud S. Poznovich

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: poznovich@bk.ru
ORCID iD: 0000-0003-2534-9252

MD, Research Associate of the Genetic Laboratory of the Center for Rare and Hereditary Diseases in Children

Russian Federation, Saint Petersburg

Anna V. Zaletina

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: turner01@mail.ru
ORCID iD: 0000-0002-9838-2777

канд. мед. наук, руководитель научно-организационного отдела, врач — травматолог-ортопед отделения № 11

Russian Federation, Saint Petersburg

References

  1. Виссарионов С.В., Кокушин Д.Н., Белянчиков С.М., и др. Оперативное лечение врожденной деформации грудопоясничного отдела позвоночника у детей // Ортопедия, травматология и восстановительная хирургия детского возраста. – 2013. – Т. 1. – № 1. – С. 10–15. [Vissarionov SV, Kokushin DN, Belyanchikov SM, et al. Operativnoe lechenie vrozhdennoy deformatsii grudopoyasnichnogo otdela pozvonochnika u detey. Pediatric traumatology, orthopaedics and reconstructive surgery. 2013;1(1):10-15. (In Russ.)]. https://doi.org/10.17816/PTORS1110-15.
  2. Рябых C.О., Филатов Е.Ю., Савин Д.М. Результаты экстирпации полупозвонков комбинированным, дорсальным и педикулярным доступами: систематический обзор // Хирургия позвоночника. – 2017. – Т. 14. – № 1. – С. 14–23. [Ryabykh CO, Filatov EY, Savin DM. Results of hemivertebra excision through combined, posterior and transpedicular approaches: systematic review. Spine surgery. 2017;14(1):14-23. (In Russ.)]. https://doi.org/10.14531/ss2017.1.14-23.
  3. Михайловский М.В., Новиков В.В., Васюра А.С., Удалова И.Г. Оперативное лечение врожденных сколиозов у пациентов старше 10 лет // Хирургия позвоночника. – 2015. – Т. 12. – № 4. – С. 42–48. [Mikhaylovskiy MV, Novikov VV, Vasyura A.S, Udalova IG. Surgical treatment of congenital scoliosis in patients over 10 years old. Spine surgery. 2015;12(4):42-48. (In Russ.)]. https://doi.org/10.14531/ss2015.4.42-48.
  4. Кулешов А.А., Лисянский И.Н., Ветрилэ М.С., и др. Сравнительное экспериментальное исследование крючковой и транспедикулярной систем фиксации, применяемых при хирургическом лечении деформаций позвоночника // Вестник травматологии и ортопедии им. Н.Н. Приорова. – 2012. – № 3. – С. 20–24. [Kuleshov AA, Lisyanskiy IN, Vetrile MS. Comparative experimental study of hook and pedicle fixation systems used at surgical treatment of spine deformities. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2012;(3):20-24. (In Russ.)]
  5. Shimizu T, Fujibayashi S, Takemoto M, et al. A multi-center study of reoperations within 30 days of spine surgery. Eur Spine J. 2016;25(3):828-835. https://doi.org/10.1007/s00586-015-4113-9.
  6. Tsai TT, Lee SH, Niu CC, et al. Unplanned revision spinal surgery within a week: a retrospective analysis of surgical causes. BMC Musculoskelet Disord. 2016;17:28. https://doi.org/10.1186/s12891-016-0891-4.
  7. Виссарионов С.В. Анатомо-антропометрическое обоснование транспедикулярной фиксации у детей 1,5–5 лет // Хирургия позвоночника. – 2006. – № 3. – С. 19–23. [Vissarionov SV. Anatomic-anthropometric basis of transpedicular fixation in children of 1.5-5 years. Spine surgery. 2006;(3):19-23. (In Russ.)]
  8. Соколова В.В. Некоторые результаты изучения мнения родителей о качестве стационарной помощи детям // Врач-аспирант. – 2017. – Т. 81. – № 2.2. – С. 286–294. [Sokolova VV. Particular results of investigation for parents satisfaction of treatment in hospital department. Vrach-aspirant. 2017;81(2.2):286-294. (In Russ.)]
  9. Fan Y, Du J, Zhang J, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960-5968. https://doi.org/10.12659/msm.905713.
  10. Larson AN, Polly DW, Jr., Guidera KJ, et al. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop. 2012;32(6):e23-29. https://doi.org/10.1097/BPO.0b013e318263a39e.
  11. Lu S, Xu YQ, Lu WW, et al. A novel patient-specific navigational template for cervical pedicle screw placement. Spine (Phila Pa 1976). 2009;34(26):E959-966. https://doi.org/10.1097/BRS.0b013e3181c09985.
  12. Hu Y, Yuan ZS, Spiker WR, et al. A comparative study on the accuracy of pedicle screw placement assisted by personalized rapid prototyping template between pre- and post-operation in patients with relatively normal mid-upper thoracic spine. Eur Spine J. 2016;25(6):1706-1715. https://doi.org/10.1007/s00586-016-4540-2.
  13. Lu S, Xu YQ, Zhang YZ, et al. A novel computer-assisted drill guide template for lumbar pedicle screw placement: A cadaveric and clinical study. Int J Med Robot. 2009;5(2):184-191. https://doi.org/10.1002/rcs.249.
  14. Putzier M, Strube P, Cecchinato R, et al. A new navigational tool for pedicle screw placement in patients with severe scoliosis: A pilot study to prove feasibility, accuracy, and identify operative challenges. Clin Spine Surg. 2017;30(4):E430-E439. https://doi.org/10.1097/BSD.0000000000000220.
  15. Бурцев А.В., Павлова О.М., Рябых С.О., Губин А.В. Компьютерное 3D-моделирование с изготовлением индивидуальных лекал для навигирования введения винтов в шейном отделе позвоночника // Хирургия позвоночника. – 2018. – Т. 15. – № 2. – С. 33–38. [Burtsev AV, Pavlova OM, Ryabykh SO, Gubin AV. Computer 3d-modeling of patient-specific navigational template for cervical screw insertion. Spine surgery. 2018;15(2):33-38. (In Russ.)]. https://doi.org/10.14531/ss2018.2.33-38.
  16. Коваленко Р.А., Руденко В.В., Кашин В.А., и др. Применение индивидуальных 3D-навигационных матриц для транспедикулярной фиксации субаксиальных шейных и верхнегрудных позвонков // Хирургия позвоночника. – 2019. – Т. 16. – № 2. – С. 35–41. [Kovalenko RA, Rudenko VV, Kashin VA, et al. Application of patient-specific 3D navigation templates for pedicle screw fixation of subaxial and upper thoracic vertebrae. Spine surgery. 2019;16(2):35-41. (In Russ.)]. https://doi.org/10.14531/ss2019.2.35-41.
  17. Jiang L, Dong L, Tan M, et al. A modified personalized image-based drill guide template for atlantoaxial pedicle screw placement: A clinical study. Med Sci Monit. 2017;23:1325-1333. https://doi.org/10.12659/msm.900066.
  18. Sugawara T, Higashiyama N, Kaneyama S, Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation. Spine (Phila Pa 1976). 2017;42(6):E340-E346. https://doi.org/10.1097/BRS.0000000000001807.
  19. Kaneyama S, Sugawara T, Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine (Phila Pa 1976). 2015;40(6):E341-348. https://doi.org/10.1097/BRS.0000000000000772.
  20. Косулин А.В., Елякин Д.В., Лебедева К.Д., и др. Применение навигационного шаблона для прохождения ножки позвонка при транспедикулярной фиксации // Педиатр. – 2019. – Т. 10. – № 3. – С. 45–50. [Kosulin AV, Elyakin DV, Lebedeva KD, et al. Navigation template for vertebral pedicle passage in transpedicular screw fixation. Pediatrician (St. Petersburg). 2019;10(3):45-50. (In Russ.)]. https://doi.org/10.17816/PED10345-50.
  21. Косулин А.В., Елякин Д.В., Корниевский Л.А., и др. Применение трехуровневого навигационного шаблона при грудных полупозвонках у детей старшего возраста // Хирургия позвоночника. – 2020. – Т. 17. – № 1. – С. 54–60. [Kosulin AV, Elyakin DV, Kornievskiy LA, et al. Application of three-level navigation template in surgery for hemivertebrae in adolescents. Spine surgery. 2020;17(1):54-60. (In Russ.)]. http://doi.org/10.14531/ss2020.1.54-60.
  22. Кокушин Д.Н., Виссарионов С.В., Баиндурашвили А.Г., и др. Сравнительный анализ положения транспедикулярных винтов у детей с врожденным сколиозом: метод «свободной руки» (in vivo) и шаблоны-направители (in vitro) // Травматология и ортопедия России. – 2018. – Т. 24. – № 4. – С. 53–63. [Kokushin DN, Vissarionov SV, Baindurashvili AG, et al. Comparative analysis of pedicle screw placement in children with congenital scoliosis: Freehand technique (in vivo) and guide templates (in vitro). Traumatology and Orthopedics of Russia. 2018;24(4):53-63. (In Russ.)]. https://doi.org/10.21823/2311-2905-2018-24-4-53-63.
  23. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990;15(1):11-14. https://doi.org/10.1097/00007632-199001000-00004.
  24. Кокушин Д.Н., Белянчиков С.М., Мурашко В.В., и др. Сравнительный анализ корректности установки транспедикулярных винтов при хирургическом лечении детей с идиопатическим сколиозом // Хирургия позвоночника. – 2017. – Т. 14. – № 4. – С. 8–17. [Kokushin DN, Belyanchikov SM, Murashko VV, et al. Сomparative analysis of the accuracy of pedicle screw insertion in surgical treatment of children with idiopathic scoliosis. Spine surgery. 2017;14(4):8-17. (In Russ.)]. https://doi.org/10.14531/ss2017.4.8-17.
  25. Yu C, Ou Y, Xie C, et al. Pedicle screw placement in spinal neurosurgery using a 3D-printed drill guide template: A systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):1. https://doi.org/10.1186/s13018-019-1510-5.
  26. Коваленко Р.А., Кашин В.А., Черебилло В.Ю., и др. Определение оптимального дизайна навигационных матриц для транспедикулярной имплантации в шейном и грудном отделах позвоночника: результаты кадавер-исследования // Хирургия позвоночника. – 2019. – Т. 16. – № 4. – С. 77–83. [Kovalenko RA, Kashin VA, Cherebillo VY, et al. Determination of optimal design of navigation templates for transpedicular implantation in the cervical and thoracic spine: results of cadaveric studies. Spine surgery. 2019;16(4):77-83. (In Russ.)]
  27. Kim SB, Won Y, Yoo HJ, et al. Unilateral spinous process noncovering hook type patient-specific drill template for thoracic pedicle screw fixation: A pilot clinical trial and template classification. Spine (Phila Pa 1976). 2017;42(18):E1050-E1057. https://doi.org/10.1097/BRS.0000000000002067.
  28. Lu S, Zhang YZ, Wang Z, et al. Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput. 2012;50(7):751-758. https://doi.org/10.1007/s11517-012-0900-1.
  29. Takemoto M, Fujibayashi S, Ota E, et al. Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: Novel design with reduced contact area. Eur Spine J. 2016;25(6):1698-1705. https://doi.org/10.1007/s00586-015-3908-z.
  30. Pan Y, Lu GH, Kuang L, Wang B. Accuracy of thoracic pedicle screw placement in adolescent patients with severe spinal deformities: A retrospective study comparing drill guide template with free-hand technique. Eur Spine J. 2018;27(2):319-326. https://doi.org/10.1007/s00586-017-5410-2.
  31. Liu K, Zhang Q, Li X, et al. Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2017;26(6):1684-1689. https://doi.org/10.1007/s00586-016-4926-1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Planning of virtual screws and guide templates in the PME Planner software environment: a — selection of the size of the transpedicular screw; b — creating the boundaries of the guide template

Download (183KB)
3. Fig. 2. Stages of intraoperative examination: a — installation of a guide template on the dorsal bone structures of the vertebra and drilling of a channel for the transpedicular screw; b — probe verification of the integrity of the walls of the formed bone canal in the vertebra; c — installation of X-ray tracers in the vertebral bodies to manage X-ray control

Download (274KB)
4. Fig. 3. Design options for the guide template: a — monosegmental with a limited contact area (option 1); b — monosegmental with a contact area including the edges of the spinous process, the arch, and the transverse processes of the vertebra (option 2); c — polysegmental, including ≥2 vertebrae in the contact area (option 3)

Download (185KB)
5. Fig. 4. Multispiral computed tomogram of the spine of a patient with congenital scoliosis after extirpation of the posterolateral semi-vertebra L2 with installed transpedicular screws using a guide template, with the completely correct positioning of the screws: a — section in the axial plane; b — section in the coronal plane; c — section in the sagittal plane

Download (130KB)

Copyright (c) 2020 Kokushin D.N., Vissarionov S.V., Baindurashvili A.G., Ovechkina A.V., Khusainov N.O., Poznovich M.S., Zaletina A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies