增材制造技术在儿童先天性脊柱畸形外科治疗中的应用(文献综述)
- 作者: Serikov S.Z.1, Bekarisov O.S.1, Vissarionov S.V.2, Abdaliyev S.S.1, Yestay D.Z.1,3
-
隶属关系:
- National Scientific Center of Traumatology and Orthopedics named after Academician N.D. Batpenov
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Karaganda Medical University
- 期: 卷 12, 编号 4 (2024)
- 页面: 481-488
- 栏目: Scientific reviews
- ##submission.dateSubmitted##: 07.09.2024
- ##submission.dateAccepted##: 24.10.2024
- ##submission.datePublished##: 15.12.2024
- URL: https://journals.eco-vector.com/turner/article/view/635765
- DOI: https://doi.org/10.17816/PTORS635765
- ID: 635765
如何引用文章
详细
背景。尽管目前已有多种方法可用于矫正脊柱畸形,但针对学龄前儿童先天性脊柱畸形的外科治疗仍是一个重要而紧迫的问题。现有的椎弓根螺钉安装技术在精确性和安全性方面仍存在一些不足之处。
研究目的。基于文献数据,分析用于矫正胸椎和腰椎先天性畸形的外科治疗方法的效果,这些畸形通常伴随椎体形成障碍。
材料与方法。本文系统回顾了关于增材制造技术在矫正先天性脊柱畸形中的应用的文献研究 结果。通过 PubMed 和 eLibrary 等科学文献数据库,使用相关关键词(如“先天性脊柱侧弯”、 “半椎体”、“增材制造技术”)进行检索。时间范围:2000年至2023年;文献数量:共找到396篇相关文献,其中51篇符合研究主题。
结果。尽管增材制造技术在脊柱外科中的应用显示出一定潜力,但由于相关文献中患者组样本较小,目前尚难以对其在手术矫正中的积极效果得出明确结论。尤其是在学龄前儿童中,针对半椎体畸形的手术矫正效果仍缺乏足够的证据支持。
结论。通过分析学龄前儿童胸椎和腰椎先天性畸形(伴随椎体形成障碍)的病例,我们发现使用模板导向器安装椎弓根螺钉是一种前景广阔的方法。这种技术利用增材制造技术的个性化优势, 显著提高螺钉植入的精确性,减少并发症的发生。然而,尚需进一步开展大规模研究,以验证其长期效果和安全性。
全文:

作者简介
Serik Zh. Serikov
National Scientific Center of Traumatology and Orthopedics named after Academician N.D. Batpenov
Email: serik_140@mail.ru
ORCID iD: 0000-0003-0982-9299
哈萨克斯坦, Astana
Olzhas S. Bekarisov
National Scientific Center of Traumatology and Orthopedics named after Academician N.D. Batpenov
Email: info@nscto.kz
ORCID iD: 0000-0002-7318-3739
MD, PhD, Cand. Sci. (Medicine)
哈萨克斯坦, AstanaSergey V. Vissarionov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN 代码: 7125-4930
MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of the RAS
俄罗斯联邦, Saint PetersburgSeidali S. Abdaliyev
National Scientific Center of Traumatology and Orthopedics named after Academician N.D. Batpenov
Email: abdaliev73@mail.ru
ORCID iD: 0000-0001-7439-141X
MD, PhD, Cand. Sci. (Medicine)
哈萨克斯坦, AstanaDaniyar Zh. Yestay
National Scientific Center of Traumatology and Orthopedics named after Academician N.D. Batpenov; Karaganda Medical University
编辑信件的主要联系方式.
Email: daniyar.estay@gmail.com
ORCID iD: 0000-0003-3583-6871
哈萨克斯坦, Astana; Karaganda
参考
- Ruf M, Harms J. Posterior hemivertebra resection with transpedicular instrumentation: Early correction in children aged 1 to 6 years. Spine (Phila Pa 1976). 2003;28(18):2132–2138. doi: 10.1097/01.BRS.0000084627.57308.4A
- Klemme WR, Polly DW Jr, Orchowski JR. Hemivertebral excision for congenital scoliosis in very young children. J Pediatr Orthop. 2001;21(6):761–764.
- Vissarionov SV, Kokushin DN, Belyanchikov SM, et al. Surgical treatment of congenital deformation of thoracolumbar spine in children. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2013;1(1):10–15. EDN: SJFIBX doi: 10.17816/PTORS1110-15
- Mikhailovsky MV, Novikov VV, Vasyura AS, et al. Surgical treatment of congenital scoliosis in patients older than 10 years. Siberian Scientific Medical Journal. 2015;35(5):70–77. (In Russ.) EDN: UMBCIV
- Vissarionov SV, Kokushin DN, Kartavenko KA, et al. Surgical treatment of children with congenital deformity of the lumbar and lumbosacral spine. Russian Journal of Spine Surgery. 2012;(3):33–37. EDN: PCCTAL doi: 10.14531/ss2012.3.33-37
- Xu W, Yang S, Wu X, et al. Hemivertebra excision with short-segment spinal fusion through combined anterior and posterior approaches for congenital spinal deformities in children. J Pediatr Orthop B. 2010;19:545–550. doi: 10.1097/BPB.0b013e32833cb887.
- Vissarionov SV, Kartavenko KA, Golubev KE, et al. Surgical treatment of children with congenital impaired formation of vertebrae in the lumbar spine. Traumatology and Orthopedics of Russia. 2012;(1):89–93. EDN: OWZWKV doi: 10.21823/2311-2905-2012-0-1-108-113
- Peng X, Chen L, Zou X. Hemivertebra resection and scoliosis correction by a unilateral posterior approach using single rod and pedicle screw instrumentation in children under 5 years of age. J Pediatr Orthop B. 2011;20:397–403. doi: 10.1097/BPB.0b013e3283492060
- Ruf M, Jensen R, Letko L, Harms J. Hemivertebra resection and osteotomies in congenital spine deformity. Spine (Phila Pa 1976). 2009;34:1791–1799. doi: 10.1097/BRS.0b013e3181ab6290.
- Gubin AV, Ryabykh SO, Burtsev AV. Retrospective analysis of screw malposition following instrumented correction of thoracic and lumbar spine deformities. Russian Journal of Spine Surgery. 2015;12(1):8–13. EDN: TODHKV doi: 10.14531/ss2015.1.8-13
- Makarevich SV. Historical aspects of transpedicular fixation of the spine: literature review. Russian Journal of Spine Surgery. 2018;15(4):95–106. EDN: YZKXYD doi: 10.14531/2018.4.95-106
- Riabykh SO, Savin DM, Medvedeva SN, et al. The experience in treatment of the spine neurogenic deformities. Orthopaedic Genius. 2013;(1):87–92. EDN: PWZWSH
- Chan CY, Kwan MK, Saw LB. Safety of thoracic pedicle screw application using the funnel technique in Asians: a cadaveric evaluation. Eur Spine J. 2010;19:78–84. doi: 10.1007/s00586-009-1157-8
- Vaccaro AR, Regan JJ, Crawford AH, et al., editors. Complications of pediatric and adult spinal surgery. New York: CRC Press; 2004.
- Gaines RW Jr. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am. 2000;82:1458–1476.
- Haid RW Jr, Subach BR, Rodts GE Jr, editors. Advances in spinal stabilization. Karger; 2003. doi: 10.1159/isbn.978-3-318-00856-2
- Halm H, Niemeyer T, Link T, et al. Segmental pedicle screw instrumentation in idiopathic thoracolumbar and lumbar scoliosis. Eur Spine J. 2000;9(3):191–197. doi: 10.1007/s005860000139
- Li G, Lv G, Passias P, et al. Complications associated with thoracic pedicle screws in spinal deformity. Eur Spine J. 2010;19(9):1576–1584. doi: 10.1007/s00586-010-1316-y
- Samdani AF, Ranade A, Sciubba DM, et al. Accuracy of free-hand placement of thoracic pedicle screws in adolescent idiopathic scoliosis: how much of a difference does surgeon experience make? Eur Spine J. 2010;19(1):91–95. doi: 10.1007/s00586-009-1183-6
- Ryabykh SO, Filatov EYu, Savin DM. Results of hemivertebra excision through combined, posterior and transpedicular approaches: systematic review. Russian Journal of Spine Surgery. 2017;14(1):14–23. EDN: YHTRIJ doi: 10.14531/ss2017.1.14-23
- Vissarionov SV. Anatomic-anthropometric basis of transpedicular fixation in children of 1.5–5 years old. Russian Journal of Spine Surgery. 2006;(3):019–023. EDN: IBWQOX doi: 10.14531/ss2006.3.19-23
- Ruf M, Harms J. Pedicle screws in 1- and 2-year-old children: technique, complications, and effect on further growth. Spine (Phila Pa 1976). 2002;27(21):E460–E466. doi: 10.1097/00007632-200211010-00019
- Patent of the RF N 2701782 / 01.10.19. Vissarionov SV, Baindurashvili AG, Khusainov NO, et al. Method of oriented installation of transpedicular screws in correction of congenital spinal deformity in children with isolated vertebrae formation disorder. (In Russ.) EDN: TWYWAG
- Shimizu T, Fujibayashi S, Takemoto M, et al. A multicenter study of reoperations within 30 days of spine surgery. Eur Spine J. 2016;25(3):828–835. doi: 10.1007/s00586-015-4113-9
- Pastorelli F, Di Silvestre M, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(Suppl 1):105–114. doi: 10.1007/s00586-011-1756-z
- Fan Y, Du J, Zhang J, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960–5968. doi: 10.12659/msm.905713
- Larson AN, Polly DW, Jr., Guidera KJ, et al. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop. 2012;32(6):e23–e29. doi: 10.1097/BPO.0b013e318263a39e
- Azimifar F, Hassani K, Saveh AH, et al. A medium invasiveness multi-level patient’s specific template for pedicle screw placement in the scoliosis surgery. Biomed Eng Online. 2017;16(1):130. doi: 10.1186/s12938-017-0421-0
- Abdaliyev SS, Yestay DZh, Vissarionov SV, et al. Computed tomography-guided intraoperative navigation in children with congenital scoliosis versus freehand/fluoroscopy methods. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(3):307–314. EDN: VFVXNI doi: 10.17816/PTORS473150
- Kokushin DN, Vissarionov SV, Baindurashvili AG, et al. The use of guide templates in the surgical treatment of preschool children with congenital scoliosis of thoracic and lumbar localization. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2020;8(3):305–316. EDN: CZKJQK doi: 10.17816/PTORS42000
- Kokushin DN, Vissarionov SV, Baindurashvili AG, et al. Comparative analysis of pedicle screw placement in children with congenital scoliosis: freehand technique (in vivo) and guide templates (in vitro). Traumatology and orthopedics of Russia. 2018;24(4):53–63. EDN: YSIIWL doi: 10.21823/2311-2905-2018-24-4-53-63
- Kwan MK, Chiu CK, Chan CYW, et al. The use of fluoroscopic guided percutaneous pedicle screws in the upper thoracic spine (T1–T6): is it safe? J Orthop Surg (Hong Kong). 2017;25(2):2309499017722438. doi: 10.1177/2309499017722438
- Waschke A, Walter J, Duenisch P, et al. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J. 2013;22(3):654–660. doi: 10.1007/s00586-012-2509-3
- Perdomo-Pantoja A, Ishida W, Zygourakis C, et al. Accuracy of current techniques for placement of pedicle screws in the spine: a comprehensive systematic review and meta-analysis of 51,161 screws. World Neurosurg. 2019;126:664–678.e3. doi: 10.1016/j.wneu.2019.02.217
- Koktekir E, Ceylan D, Tatarli N, et al. Accuracy of fluoroscopically-assisted pedicle screw placement: analysis of 1,218 screws in 198 patients. Spine (Phila Pa 1976). 2014;14(8):1702–1708. doi: 10.1016/j.spinee.2014.03.044
- Amato V, Giannachi L, Irace C, et al. Accuracy of pedicle screw placement in the lumbosacral spine using conventional technique: computed tomography postoperative assessment in 102 consecutive patients. J Neurosurg Spine. 2010;12(3):306–313. doi: 10.3171/2009.9.SPINE09261
- Azimifar F, Hassani K, Saveh AH, et al. A medium invasiveness multi-level patient’s specific template for pedicle screw placement in the scoliosis surgery. Biomed Eng Online. 2017;16(1):130. doi: 10.1186/s12938-017-0421-0
- Gross BC, Erkal JL, Lockwood SY, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–3253. doi: 10.1021/ac403397r
- Hull C, Feygin M, Baron Y, et al. Rapid prototyping: current technology and future potential. Rapid Prototyping Journal. 1995;1(1):11–19.
- Bagaturija GO. Prospects for the use of 3D-printing when planning surgery. Medicine: theory and practice. 2016;1(1):26–35. EDN: ZCUFHP
- Berry E, Cuppone M, Porada S, et al. Personalised image-based templates for intra-operative guidance. Proc Inst Mech Eng H. 2005;219(2):111–118. doi: 10.1243/095441105X9273
- Takemoto M, Fujibayashi S, Ota E, et al. Additive manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area. Eur Spine J. 2016;25(6):1698–1705. doi: 10.1007/s00586-015-3908-z
- Chen H, Guo K, Yang H, et al. Thoracic pedicle screw placement guide plate produced by three-dimensional (3-D) laser printing. Med Sci Monit. 2016;22:1682–1686. doi: 10.12659/msm.896148
- Goffin J, Van Brussel K, Martens K, et al. Three-dimensional computed tomography-based, personalized drill guide for posterior cervical stabilization at C1-C2. Spine (Phila Pa 1976). 2001;26(12):1343–1347. doi: 10.1097/00007632-200106150-00017
- Lu S, Xu YQ, Lu WW, et al. A novel patient-specific navigational template for cervical pedicle screw placement. Spine (Phila Pa 1976). 2009;34(26):E959–E966. doi: 10.1097/BRS.0b013e3181c09985
- Putzier M, Strube P, Cecchinato R, et al. A new navigational tool for pedicle screw placement in patients with severe scoliosis: a pilot study to prove feasibility, accuracy, and identify operative challenges. Clin Spine Surg. 2017;30(4):E430–E439. doi: 10.1097/BSD.0000000000000220
- Kovalenko RA, Ptashnikov DA, Cherebillo VYu, Kashin VA. Comparison of the accuracy and safety of pedicle screw placement in thoracic spine between 3D printed navigation templates and free hand technique. Traumatology and Orthopedics of Russia. 2020;26(3):49–60. EDN: UENTKA doi: 10.21823/2311-2905-2020-26-3-49-60
- Cecchinato R, Berjano P, Zerbi A, et al. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: a prospective, randomized clinical trial. Eur Spine J. 2019;28(7):1712–1723. doi: 10.1007/s00586-019-05978-3
- Pan Y, Lü GH, Kuang L, et al. Accuracy of thoracic pedicle screw placement in adolescent patients with severe spinal deformities: a retrospective study comparing drill guide template with free-hand technique. Eur Spine J. 2018;27(2):319–326. doi: 10.1007/s00586-017-5410-2
- Cao J, Zhang X, Liu H, et al. 3D printed templates improve the accuracy and safety of pedicle screw placement in the treatment of pediatric congenital scoliosis. BMC Musculoskelet Disord. 2021;22(1):1014. doi: 10.1186/s12891-021-04892-4
- Vissarionov SV, Kokushin DN, Khusainov NO, et al. Comparing the treatment of congenital spine deformity using freehand techniques in vivo and 3D-printed templates in vitro (prospective-retrospective single-center analytical single-cohort study). Adv Ther. 2020;37(1):402–419. doi: 10.1007/s12325-019-01152-9
补充文件
