Роль генетической детерминанты в развитии врожденного сколиоза. Обзор литературы

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обоснование. Врожденный сколиоз — сложное мультифакторное заболевание, которое возникает в результате нарушений в период эмбриогенеза позвоночного столба. Нарушения на любом из этапов эмбрионального развития плода могут привести к врожденному сколиозу и, как результат, прогрессирующей деформации позвоночника. Последние исследования все чаще указывают на генетические факторы как важные детерминанты развития этой патологии.

Цель — анализ литературных данных о генетической природе врожденного сколиоза, молекулярных механизмах регуляции, их частоте, мутационных изменениях и вкладе конкретных генов.

Материалы и методы. Данные литературы получены в результате поиска по ключевым словам в базах данных: PubMed, Google Scholar, Cochrane library, Web of Science, Lens.org, eLibrary, глубина поиска составила 25 лет. Критериями включения выступали: наличие полнотекстового источника, метаанализы данных, систематические обзоры, когортные исследования пациентов с врожденным сколиозом, модели экспериментальных животных, исследования с дизайном случай–контроль. Критерии исключения: отсутствие полнотекстового источника, патенты, полезные модели, исследования без представления клинических данных. В соответствии с этими критериями отобрано 54 публикации для подробного анализа.

Результаты. По результатам анализа литературы гены были разделены на 4 категории: гены предрасположенности (LMX1A, PTK7, SOX9, TBX6, TBXT); гены, мутации в которых служат прямой причиной синдромов или моногенных болезней, сопровождающихся сколиозом (FBN1); гены с вариацией числа копий (DHX40, DSCAM, MYSM1, NOTCH2); гены с аномальным метилированием у пациентов со сколиозом (COL5A1, GRID1, GSE1, RGS3, SORCS2, IGH1, IGH3, IGHM, KAT6B, TNS3).

Заключение. Анализ научных работ свидетельствует о наличии предрасполагающих генетических факторов, связанных с развитием врожденного сколиоза в различных его фенотипических проявлениях. Данные крупномасштабных исследований позволяют уточнить этиологические причины и расширить возможности прогнозирования характера течения врожденного сколиоза. При этом данные малых выборок могут определить дальнейшие перспективы поиска генетических детерминант развития патологии.

Полный текст

Доступ закрыт

Об авторах

Сергей Валентинович Виссарионов

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-код: 7125-4930

д-р мед. наук, профессор, чл.-корр. РАН

Россия, Санкт-Петербург

Полина Андреевна Першина

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Автор, ответственный за переписку.
Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
SPIN-код: 2484-9463

аспирант

Россия, Санкт-Петербург

Сергей Егорович Хальчицкий

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Email: s_khalchitski@mail.ru
ORCID iD: 0000-0003-1467-8739
SPIN-код: 2143-7822

канд. биол. наук

Россия, Санкт-Петербург

Марат Сергеевич Асадулаев

Национальный медицинский исследовательский центр детской травматологии и ортопедии имени Г.И. Турнера

Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-код: 3336-8996
Scopus Author ID: 57191618743

канд. мед. наук

Россия, Санкт-Петербург

Список литературы

  1. McMaster MJ, Ohtsuka K. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J Bone Joint Surg Am. 1982;64(8):1128–1147.
  2. Vissarionov SV, Kartavenko KA, Kokushin DN. Natural course of congenital spinal deformity in children with isolated vertebral formation disorder in the lumbar region. Spine Surgery. 2018;15(1):6–17. EDN: UPDMJW doi: 10.14531/ss2018.1.6-17
  3. Vissarionov SV, Asadulaev MS, Orlova EA. Assessment of the respiratory system in children with congenital scoliosis using impulse oscillometry and computed tomography (preliminary results). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(1):33–42. EDN: XAVVMT doi: 10.17816/ortho102133-42
  4. Ulrich EV, Mushkin AY, Rubin AV. Congenital spinal deformities in children: epidemiology prognosis and management strategy. Spine Surgery. 2009;(2):25–30. (In Russ).
  5. Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip Rev Dev Biol. 2012;1(3):401–423. doi: 10.1002/wdev.34
  6. Mackel CE, Jada A, Samdani AF, et al. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst. 2018;34(11):2155–2171. EDN: ZIWCEZ doi: 10.1007/s00381-018-3915-6
  7. Kerna NA, Carsrud NV, Zhao X, et al. The pathophysiology of scoliosis across the spectrum of human physiological systems. Eur J Med Health Res. 2024;2(2):69–81. EDN: SNVPKV doi: 10.59324/ejmhr.2024.2(2).07
  8. Turnpenny PD. Congenital scoliosis and segmentation defects of the vertebrae in the genetic clinic. In: Kusumi K, Dunwoodie S, eds. The genetics and development of scoliosis. Cham: Springer; 2018. P. 63–88. doi: 10.1007/978-3-319-90149-7_3
  9. Morriss-Kay GM, Sokolova N. Embryonic development and pattern formation. FASEB J. 1996;10(9):961–968. doi: 10.1096/fasebj.10.9.8801178
  10. Christ B, Scaal M. Formation and differentiation of avian somite derivatives. Adv Exp Med Biol. 2008;638:1–41. doi: 10.1007/978-0-387-09606-3_1
  11. Sun D, Ding Z, Hai Y, et al. Advances in epigenetic research of adolescent idiopathic scoliosis and congenital scoliosis. Front Genet. 2023;14:1211376. EDN: IRJEVB doi: 10.3389/fgene.2023.1211376
  12. Hunter T. Signaling – 2000 and beyond. Cell. 2000;100(1):113–127. doi: 10.1016/s0092-8674(00)81688-8
  13. Giampietro PF, Dunwoodie SL, Kusumi K, et al. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann NY Acad Sci. 2008;1151(1):38–67. doi: 10.1111/j.1749-6632.2008.03452.x
  14. Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013;4(4):167–174. doi: 10.5312/wjo.v4.i4.167
  15. Diaz-Cuadros M, Wagner DE, Budjan C, et al. In vitro characterization of the human segmentation clock. Nature. 2020;580(7801):113–118. EDN: ZAGEEO doi: 10.1038/s41586-019-1885-9
  16. Al-Kateb H, Khanna G, Filges I, et al. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement. Am J Med Genet A. 2014;164A(5):1118–1126. doi: 10.1002/ajmg.a.36401
  17. Chunhui S, Hebao Y, Li W, et al. FAK promotes osteoblast progenitor cell proliferation and differentiation by enhancing Wnt signaling. J Bone Miner Res. 2016;31(12):2227–2238. doi: 10.1002/jbmr.2908
  18. Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. EDN: YYUIEE doi: 10.1038/s41392-020-00222-7
  19. Jain R, Rentschler S, Epstein JA. Notch and cardiac outflow tract development. Ann NY Acad Sci. 2010;1188:184–190. EDN: NZFCVX doi: 10.1111/j.1749-6632.2009.05099.x
  20. Muguruma Y, Hozumi K, Warita H, et al. Maintenance of bone homeostasis by DLL1-mediated notch signaling. J Cell Physiol. 2017;232(10):2569–2580. doi: 10.1002/jcp.25647
  21. Rajesh D, Dahia CL. Role of sonic hedgehog signaling pathway in intervertebral disc formation and maintenance. Curr Mol Biol Rep. 2018;4(4):173–179. doi: 10.1007/s40610-018-0107-9
  22. Lawson LY, Harfe BD. Developmental mechanisms of intervertebral disc and vertebral column formation. Wiley Interdiscip Rev Dev Biol. 2017;6(6):e283. doi: 10.1002/wdev.283
  23. Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a central regulator in vertebrate organ regeneration. Int J Mol Sci. 2022;23(3):1464. EDN: ELHHFS doi: 10.3390/ijms23031464
  24. Lorente R, Mariscal G, Lorente A. Incidence of genitourinary anomalies in congenital scoliosis: systematic review and meta-analysis. Eur Spine J. 2023;32(11):3961–3969. EDN: MPCWKC doi: 10.1007/s00586-023-07214-4
  25. Chen S, Liu S, Ma K, et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage. 2019;27(6):837–845. doi: 10.1016/j.joca.2019.05.001
  26. Baldridge D, Shchelochkov O, Kelley B, et al. Signaling pathways in human skeletal dysplasias. Annu Rev Genomics Hum Genet. 2010;11:189–217. doi: 10.1146/annurev-genom-082908-150158
  27. Neben CL, Lo M, Jura N, et al. Feedback regulation of RTK signaling in development. Dev Biol. 2017;428(1):7–14. doi: 10.1016/j.ydbio.2017.10.007
  28. Wu N, Yuan S, Liu J, et al. Association of LMX1A genetic polymorphisms with susceptibility to congenital scoliosis in Chinese Han population. Spine. 2014;39(21):1785–1791. doi: 10.1097/BRS.0000000000000536
  29. Fei Q, Wu Z, Wang Y, et al. Association of LMX1A gene polymorphisms with susceptibility to congenital scoliosis in a Chinese Han population. Chinese Journal of Tissue Engineering Research. 2011;15(35):6510–6515.
  30. Wu N, Giampietro PF, Takeda K. The genetics contributing to disorders involving congenital scoliosis. In: Kusumi K, Dunwoodie SL, editors. The genetics and development of scoliosis. Springer; 2018. P. 89–106. doi: 10.1007/978-3-319-90149-7_4
  31. Hayes M, Gao X, Yu LX, et al. Ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun. 2014;5:4777. EDN: YETVVP doi: 10.1038/ncomms5777
  32. Wang M. Role of the protein tyrosine kinase 7 gene in human neural tube defects. Mingqin Wang; 2015. Available from: https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/13428/Wang_Mingqin_2015_Memoire.pdf?sequence=4&isAllowed=y [cited 2025 Feb 9]
  33. Meier N. Whole exome sequencing for gene discovery in lethal fetal disorders [dissertation]. Basel; 2021. 60 p.
  34. Su Z, Yang Y, Wang S, et al. The mutational landscape of ptk7 in congenital scoliosis and adolescent idiopathic scoliosis. Genes (Basel). 2021;12(11):1791. EDN: WYLNVL doi: 10.3390/genes12111791
  35. Wu N, Wang L, Hu J, et al. A recurrent rare SOX9 variant (M469V) is associated with congenital vertebral malformations. Curr Gene Ther. 2019;19(4):242–247. doi: 10.2174/1566523219666190924120307
  36. Latypova X, Creadore SG, Dahan-Oliel N, et al. A genomic approach to delineating the occurrence of scoliosis in arthrogryposis multiplex congenita. Genes (Basel). 2021;12(7):1052. EDN: ENSMWJ doi: 10.3390/genes12071052
  37. Liu J, Wu N; Deciphering Disorders Involving Scoliosis and Comorbidities (DISCO) study, et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med. 2019;21(7):1548–1558. doi: 10.1038/s41436-018-0377-x
  38. Chen Z, Yan Z, Yu C, et al. Cost-effectiveness analysis of using the TBX6-associated congenital scoliosis risk score (TACScore) in genetic diagnosis of congenital scoliosis. Orphanet Journal of Rare Diseases. 2020;15(1):123. EDN: SMDATS doi: 10.1186/s13023-020-01537-y
  39. Chen W, Liu J, Yuan D, et al. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget. 2016;7(37):57430–57441. doi: 10.18632/oncotarget.11147
  40. Khalchitsky S, Vissarionov S, Kokushin D, et al. Influence of the TBX6 gene on the development of congenital spinal deformities in children. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(3):229–237. EDN: HCDKDO doi: 10.17816/PTORS70797
  41. Yang N, Wu N, Liu J, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet. 2019;28(4):539–547. EDN: FDRHYP doi: 10.1093/hmg/ddy362
  42. Feng X, Cheung JPY, Je JSH, et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res. 2021;39(5):971–988. EDN: GQQCGX doi: 10.1002/jor.24805
  43. Zhang W, Yao Z, Guo R, et al. Molecular identification of T-box transcription factor 6 and prognostic assessment in patients with congenital scoliosis. Front Med (Lausanne). 2022;9:941468. EDN: HPLQXO doi: 10.3389/fmed.2022.941468
  44. Lin M, Zhao S, Liu G, et al. Identification of novel FBN1 variations implicated in congenital scoliosis. J Hum Genet. 2020;65(3):221–230. EDN: WWGKJN doi: 10.1038/s10038-019-0698-x
  45. Lin M, Liu Z, Liu G, et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med. 2019;7(3):e1023. doi: 10.1002/mgg3.1023
  46. Liu J, Zhou Y, Liu S, et al. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet. 2018;137(6–7):553–567. EDN: YITURF doi: 10.1007/s00439-018-1910-3
  47. Lai W, Feng X, Yue M, et al. Identification of copy number variants in a Southern Chinese cohort of patients with congenital scoliosis. Genes. 2021;12(8):1213. EDN: WSOROR doi: 10.3390/genes12081213
  48. DiTommaso T, Jones LK, Cottle DL, et al. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet. 2014;10(10):e1004705. doi: 10.1371/journal.pgen.1004705
  49. Gamba BF, Zechi-Ceide RM, Kokitsu-Nakata NM, et al. Interstitial 1q21.1 microdeletion is associated with severe skeletal anomalies, dysmorphic face and moderate intellectual disability. Mol Syndr. 2016;7(6):344–348. doi: 10.1159/000452649
  50. Szoszkiewicz A, Bukowska-Olech E, Jamsheer A. Molecular landscape of congenital vertebral malformations: recent discoveries and future directions. Orphanet J Rare Dis. 2024;19(1):32. EDN: HSSCDD doi: 10.1186/s13023-024-03040-0
  51. Liu G, Zhao H, Yan Z, et al. Whole-genome methylation analysis reveals novel epigenetic perturbations of congenital scoliosis. Mol Ther Nucleic Acids. 2021;23:1281–1287. EDN: TPFOML doi: 10.1016/j.omtn.2021.02.002
  52. Wu Y, Zhang H, Tang M, et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. J Transl Med. 2020;18(1):210. EDN: DECJVN doi: 10.1186/s12967-020-02367-z
  53. Yanay N, Elbaz M, Konikov-Rozenman J, et al. Pax7, Pax3 and TNS3 genes are involved in skeletal muscle and vertebral development. Hum Mol Genet. 2019;28(20):3369–3379. doi: 10.1093/hmg/ddz261
  54. Wu YT, Zhang H, Tang M, et al. Abnormal TNS3 gene methylation in patients with congenital scoliosis. BMC Musculoskelet Disord. 2022;23:5730. EDN: EKZHQQ doi: 10.1186/s12891-022-05730-x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.