股骨髁骨软骨破坏性病变联合修复术在青少年中的应用:临床观察与文献综述

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。儿童和青少年股骨髁病变的主要原因之一是营养不良过程,该过程伴有骨下骨破坏,并进一步累及覆盖软骨。主要病理状态包括离断性骨软骨炎和因糖皮质激素治疗导致的药物性骨坏死。 目前文献中缺乏关于股骨髁骨软骨缺损患者最佳手术治疗方法的数据。

临床观察。报道2例青少年广泛性股骨髁骨软骨缺损患者的临床病例。

讨论。进行了文献综述,介绍了相关分类,并探讨了股骨髁深层骨软骨缺损患者的手术治疗方法。 现有方法可获得良好至优异的临床结果,但由于缺乏涵盖所有治疗方法的随机或比较性研究,尚无法明确确定最佳手术方法。在大多数现代研究中,治疗效果主要通过间接影像学评估,而该评估方式与临床结局呈负相关,这可能会扭曲对治疗效果的正确解读。

结论。股骨髁骨软骨缺损问题在创伤与矫形外科领域具有重要意义,包括青少年和儿童患者。在众多现有治疗方法(从再血管化骨钻孔术到关节置换术)中,联合应用自体骨与胶原膜的修复术可能提供稳定的临床和功能改善效果。

全文:

 

×

作者简介

Sergey Y. Semenov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: sergey2810@yandex.ru
ORCID iD: 0000-0002-7743-2050
SPIN 代码: 8093-3924

MD, PhD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Vyacheslav I. Zorin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

Email: zoringlu@yandex.ru
ORCID iD: 0000-0002-9712-5509
SPIN 代码: 4651-8232

MD, PhD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Kocher MS, Tucker R, Ganley TJ, et al. Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med. 2006;34(7):1181–1191. doi: 10.1177/0363546506290127
  2. Konig F. The classic: on loose bodies in the joint. 1887. Clin Orthop Relat Res. 2013;471(4):1107–1115. doi: 10.1007/s11999-013-2824-y
  3. Andriolo L, Crawford DC, Reale D, et al. Osteochondritis dissecans of the knee: etiology and pathogenetic mechanisms. A systematic review. Cartilage. 2020;11(3):273–290. doi: 10.1177/1947603518786557
  4. Grimm NL, Weiss JM, Kessler JI, et al. Osteochondritis dissecans of the knee: pathoanatomy, epidemiology, and diagnosis. Clin Sports Med. 2014;33(2):181–188. doi: 10.1016/j.csm.2013.11.006
  5. Tarabella V, Filardo G, Di Matteo B, et al. 2016 From loose body to osteochondritis dissecans: a historical account of disease definition. Joints. 2016;4(3):165–170. doi: 10.11138/jts/2016.4.3.165
  6. Linden B. Osteochondritis dissecans of the femoral condyles: a long-term follow-up study. J Bone Joint Surg Am. 1977;59(6):769–776.
  7. Kessler JI, Weiss JM, Nikizad H, et al. Osteochondritis dissecans of the ankle in children and adolescents: demographics and epidemiology. Am J Sports Med. 2014;42(9):2165–71. doi: 10.1177/0363546514538406
  8. Hefti F, Beguiristain J, Krauspe R, et al. Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop B. 1999;8(4):231–245.
  9. Andriolo L, Candrian C, Papio T, et al. Osteochondritis dissecans of the knee - conservative treatment strategies: a systematic review. Cartilage. 2019;10(3):267–277. doi: 10.1177/1947603518758435
  10. Sales de Gauzy J, Mansat C, Darodes PH, Cahuzac JP. Natural course of osteochondritis dissecans in children. J Pediatr Orthop B. 1999;8(1):26–28.
  11. Masquijo J, Kothari A. Juvenile osteochondritis dissecans (JOCD) of the knee: current concepts review. EFORT Open Rev. 2019;4(5):201–212. doi: 10.1302/2058-5241.4.180079
  12. Vorotnikov AA, Airapetov GA, Vasyukov VA, et al. Modern aspects of the treatment of Koenig’s disease in children. N.N. Priorov Journal of Traumatology and Orthopedics. 2020;27(3):79–86. EDN: RZDPAL doi: 10.17816/vto202027379-86
  13. Biddeci G, Bosco G, Varotto E, et al. Osteonecrosis in children and adolescents with acute lymphoblastic leukemia: early diagnosis and new treatment strategies. Anticancer Res. 2019;39(3):1259–1266. doi: 10.21873/anticanres.13236
  14. Görtz S, De Young AJ, Bugbee WD. Fresh osteochondral allografting for steroid-associated osteonecrosis of the femoral condyles. Clin Orthop Relat Res. 2010;468(5):1269–1278. doi: 10.1007/s11999-010-1250-7
  15. Ellermann JM, Donald B, Rohr S, et al. Magnetic resonance imaging of osteochondritis dissecans: validation study for the ICRS classification system. Acad Radiol. 2016;23(6):724–729. doi: 10.1016/j.acra.2016.01.015
  16. Semenov AV, Kukueva DM, Lipkin YuG, et al. Surgical treatment of stable foci of the osteochondritis dissecans in children: a systematic review. Russian Journal of Pediatric Surgery. 2021;25(3):179–185. EDN: WBGGVW doi: 10.18821/1560-9510-2021-25-3-179-185
  17. Louisia S, Beaufils P, Katabi M, et al. Transchondral drilling for osteochondritis dissecans of the medial condyle of the knee. Knee Surg Sports Traumatol Arthrosc. 2003;11(1):33–39. doi: 10.1007/s00167-002-0320-0
  18. Pligina EG, Kerimova LG, Burkin IA, et al. Echnologies for stimulation of the reparative processes in children with knee osteochondritis dissecans: a review. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2022;12(2):187–200. EDN: DQHMBM doi: 10.17816/psaic1006
  19. Assenmacher AT, Pareek A, Reardon PJ, et al. Long-term outcomes after osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. Arthroscopy. 2016;32(10):2160–2168. doi: 10.1016/j.arthro.2016.04.020
  20. Crawford DC, Safran MR. Osteochondritis dissecans of the knee. J Am Acad Orthop Surg. 2006;14(2):90–100. doi: 10.5435/00124635-200602000-00004
  21. Pridie AH. The method of resurfacing osteoarthritic knee. J Bone Joint Surg. 1959;41:618–623.
  22. Barrett I, King AH, Riester S, et al. Internal fixation of unstable osteochondritis dissecans in the skeletally mature knee with metal screws. Cartilage. 2016;7(2):157–162. doi: 10.1177/1947603515622662
  23. Avakyan AP. Osteochondritis dissecans of the medial condyle of the femur in children and adolescents (diagnosis and treatment) [dissertation abstract]. Moscow; 2015. 24  p. (In Russ.) EDN: HVQCAE
  24. Donaldson LD, Wojtys EM. Extraarticular drilling for stable osteochondritis dissecans in the skeletally immature knee. J Pediatr Orthop. 2008;28(8):831–835. doi: 10.1097/BPO.0b013e31818ee248
  25. Accadbled F, Turati M, Kocher MS. Osteochondritis dissecans of the knee: Imaging, instability concept, and criteria. J Child Orthop. 2023;17(1):47–53. doi: 10.1177/18632521221149054
  26. Bryanskaya AI, Tikhilov RM, Kulyaba TA, et al. Urgical treatment of patients with local defects of joint surface of femur condyles (review). Traumatology and Orthopedics of Russia. 2010;(4):84–92. EDN: NCPGHV
  27. Airapetov G, Vorotnikov A, Konovalov E. Surgical methods of focal hyaline cartilage defect management in large joints (literature review). Genij Ortopedii. 2017;23(4):485–491. doi: 10.18019/1028-4427-2017-23-4-485-491
  28. Brittberg M. How to treat patients with osteochondritis dissecans (juvenile and adult). In: Brittberg M. Cartilage repair (clinical guidelines). DJO Publications; 2012. P. 171–184
  29. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–895. doi: 10.1056/NEJM199410063311401
  30. Steadman JR, Rodkey WG, Singleton SB, et al. Microfracture technique forfull-thickness chondral defects: technique and clinical results. Operative Techniques in Orthopaedics. 1997;7(4):300–304. doi: 10.1016/S1048-6666(97)80033-X
  31. Kreuz PC, Erggelet C, Steinwachs MR, et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006;22(11):1180–1186. doi: 10.1016/j.arthro.2006.06.020
  32. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85-A (Suppl 2):58–69. doi: 10.2106/00004623-200300002-00008
  33. Brix M, Kaipel M, Kellner R, et al. Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop. 2016;40(3):625–632. EDN: HRXGPP doi: 10.1007/s00264-016-3118-2
  34. Pestka JM, Bode G, Salzmann G, et al. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted? Am J Sports Med. 2014;42(1):208–215. doi: 10.1177/0363546513507768
  35. Airapetov GA. The treatment of the кoenig’s disease (review of literature). Medical Alliance. 2019;(2):70–76. EDN: AUQYET
  36. Trillat A. Internal derangement of the knee: osteochondral fractures of the knee. Proceedings of the Royal Society of Medicine. 1968;61(1):45. doi: 10.1177/003591576806100115
  37. Bhattacharjee A, McCarthy HS, Tins B, et al. Autologous bone plug supplemented with autologous chondrocyte implantation in osteochondral defects of the knee. Am J Sports Med. 2016;44(5):1249–1259. doi: 10.1177/0363546516631739
  38. Berruto M, Ferrua P, Uboldi F, et al. Can a biomimetic osteochondral scaffold be a reliable alternative to prosthetic surgery in treating late-stage SPONK? Knee. 2016;23(6):936–941. doi: 10.1016/j.knee.2016.08.002
  39. Smillie IS. Treatment of osteochondritis dissecans. J Bone Joint Surg Br. 1957;39-B(2):248–260. doi: 10.1302/0301-620X.39B2.248
  40. Scott DJ Jr, Stevenson CA. Osteochondritis dissecans of the knee in adults. Clin Orthop Relat Res. 1971;76:82-86. doi: 10.1097/00003086-197105000-00012
  41. Hangody L, Dobos J, Baló E, et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010;38(6):1125–1133. doi: 10.1177/0363546509360405
  42. Carey JL, Wall EJ, Grimm NL, et al. Novel arthroscopic classification of osteochondritis dissecans of the knee: a multicenter reliability study. Am J Sports Med. 2016;44(7):1694–1698. doi: 10.1177/0363546516637175
  43. Buckwalter JA, Anderson DD, Brown TD, et al. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage. 2013;4(4):286–294. doi: 10.1177/1947603513495889
  44. Fokter SK, Strahovnik A, Kos D, et al. Long term results of operative treatment of knee osteochondritis dissecans. Wien Klin Wochenschr. 2012;124(19–20):699–703. doi: 10.1007/s00508-012-0230-1
  45. Villalba J, Peñalver J, Sanchez J. Treatment of big osteochondral defects in the lateral femoral condyle in young patients with autologous graft and collagen mesh. Rev Esp Cir Ortop Traumatol. 2021;65(5):317–321. EDN: GCHFYC doi: 10.1016/j.recote.2021.05.010
  46. Filardo G, Andriolo L, Soler F, et al. Treatment of unstable knee osteochondritis dissecans in the young adult: results and limitations of surgical strategies – the advantages of allografts to address an osteochondral challenge. Knee Surg Sports Traumatol Arthrosc. 2019;27(6):1726–1738. EDN: AXGLXQ doi: 10.1007/s00167-018-5316-5
  47. Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18(1):67–75. doi: 10.1016/s0278-5919(05)70130-7
  48. Brown D, Shirzad K, Lavigne SA, et al. Osseous Integration after fresh osteochondral allograft transplantation to the distal femur: a prospective evaluation using computed tomography. Cartilage. 2011;2(4):337–345. doi: 10.1177/1947603511410418
  49. Cook JL, Stoker AM, Stannard JP, et al. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res. 2014;472(11):3404–3414. doi: 10.1007/s11999-014-3773-9
  50. Sherman SL, Garrity J, Bauer K, et al. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg. 2014;22(2):121–133. doi: 10.5435/JAAOS-22-02-121
  51. Williams RJ 3rd, Ranawat AS, Potter HG, et al. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007;89(4):718–726. doi: 10.2106/JBJS.F.00625
  52. Lyon R, Nissen C, Liu XC, Curtin B. Can fresh osteochondral allografts restore function in juveniles with osteochondritis dissecans of the knee? Clin Orthop Relat Res. 2013;471(4):1166–1173. doi: 10.1007/s11999-012-2523-0
  53. Cabral J, Duart J. Osteochondritis dissecans of the knee in adolescents: how to treat them? J Child Orthop. 2023;17(1):54–62. EDN: QTHWVD doi: 10.1177/18632521231152269
  54. Murphy RT, Pennock AT, Bugbee WD. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population. Am J Sports Med. 2014;42(3):635–640. doi: 10.1177/0363546513516747

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diagnostic imaging of patient B (age: 17 years at admission): a, X-ray of the right knee joint in anteroposterior and axial views; b, computed tomography scans exhibiting frontal, sagittal, and axial slices through the lesion; c, magnetic resonance imaging scans, frontal and sagittal views through the lesion. The area of destruction is indicated by an arrow.

下载 (309KB)
3. Fig. 2. Intraoperative images of patient B. a, arthrotomy, lesion is marked by an arrow; b, view of the defect after sequestrectomy, site is indicated by an arrow; the removed sequestrum is shown; c, autologous bone grafting of the defect; d, collagen membrane placed over the defect.

下载 (323KB)
4. Fig. 3. Patient B. Arthroscopic view 8 months after reconstruction.

下载 (86KB)
5. Fig. 4. Follow-up clinical and imaging evaluation of patient B at 2.5 years after reconstruction: a, range of motion in the right knee joint; b, magnetic resonance images in the frontal and sagittal planes.

下载 (236KB)
6. Fig. 5. Imaging of patient M.: a, magnetic resonance imaging, sagittal slice; b, spiral computed tomography, sagittal slice through the osteochondral defect of the lateral femoral condyle; c, spiral computed tomography, 3D reconstruction illustrating the size of the defect and the presence of a loose osteochondral fragment in the lateral femoral condyle. Arrows indicate the osteochondral defect region and the loose osteochondral fragment.

下载 (127KB)
7. Fig. 6. Intraoperative images of patient M.: a, osteochondral defect of the lateral femoral condyle, with the removed osteochondral body; b, post-resection defect filled with an autologous bone graft; c, the area of bone grafting was covered with a collagen membrane secured with interrupted sutures.

下载 (346KB)
8. Fig. 7. Patient M. Computed tomography of the left knee joint with three standard projections. The bone graft zone is indicated by an arrow.

下载 (175KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.